
www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a copy o f a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation o f techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . I f it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication o f either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image o f the page can be found in the adjacent frame. I f
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer of a large sheet and to
continue from left to right in equal sections with small overlaps. I f necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
MicixSiliris

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

8304681

Jaragh, Mansour H.

ANALYSIS OF PARALLEL MULTIPROCESSOR ARCHITECTURE

New Mexico Stale University PH.D. 1982

University
Microfilms

International 300 N, Zeeb Road, Ann Arbor, M I 48106

Copyright 1983

by

Jaragh, Mansour H.

All Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark -J .

1. Glossy photographs or pages______

2. Colored illustrations, paper or print______

3. Photographs with dark background______

4. Illustrations are poor ccpy______

5. Pages with black marks, not original copy_______

6. Print shows through as there is text on both sides of page______

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements______

9. Tightly bound copy with print lost in spine_______

10. Computer printout pages with indistinct print______

11. Page(s)____________ lacking when material received, and not available from school or
author.

12. Page(s)____________seem to be missing in numbering only as text follows.

13. Two pages numbered____________ . Text follows.

14. Curling and wrinkled pages_______

15. Other___

University
Microfilms

International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ANALYSIS OF PARALLEL MULTIPROCESSOR ACHITECTURE

BY

•MANSOUR JARAGH, B.S., M.S.'

A Diasertation Submitted to the Graduate School

in partial fulfilment of the requirements
for the Degree

Doctor of Philosophy

Major Subject: Electrical and Computer Engineering

Related Area: Computer Science

New Mexico State University

Las Cruces, New Mexico

October 1982

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

c) Mansour Hameed Jaragh

- ii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

"Analysis of Parallel Multiprocessor Architecture," a

dissertation prepared by Mansour Hameed Jaragh in partial
fulfillment of the requirements for the degree Doctor of

Philosophy, has been approved by the following:

william
Dean of the Graduate School

Matchett

Chairmaiif of the Examining^Committee

Date

Committee in Charge:

Dr. Javin M. Taylor

Dr. Gerald M. Flaehs

Dr. Robert L. Golden
Dr. John El. Johnston

Dr. M. Don Merril
Dr. Arun G. Walvekar

- iii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to acknowledge the guidance and great help

of my advisor Dr Javin M. Taylor both during my graduate

studies and during the course of this research. The

professors at NMSO and the committee members deserve a

special thank. I would like to thank Mr. Foo Lam of the

Instrumentation Directorate at White Sands Missle Range, and

the Kuwaiti Civil Services for their support. I appreciate
the cooperation of the project team and special thanks goes

to Robert Widlicka.
Finally, I would like to acknowledge the encouragment and

support of my family, especially my wife Fakhreyah, and my

two sons Abdullah and Hamid for not seeing me among them as

often as they should.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VITA

August 18, 1952 - Born in Kuwait city, Kuwait.

1975 B.S.E.E., Tulane University, New Orleans,

Louisiana, U.S.A.
1975-1977 Engineer at Kuwait Ministery of Telecommunication,

Kuwait.
1979 M.S.E.E., New Mexico State University, Las Cruces.

1981-1982 Research Assistent, Department of Electrical and
Computer Engineering, New Mexico State University.

PROFESSIONAL AND HONORARY SOCIETIES

Institute of Electrical and Electronic Engineers

Association for Computing Maehinary

Eta Kappa Nu

Phi Kappa Phi

- v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

FIELDS OF STUDY

Major Field: Computer Engineering
Microprocessor and multiprocessor architecture

Performance evaluation

Related Area: Computer Science
Computer system computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

ANALYSIS OF PARALLEL MULTIPROCESSOR ARCHITECTURE

BY

MANSOUR H JARAGH, B.S.E.E.,M.S .E.E .

Doctor of Philosophy in Electrical and Computer Engineering

New Mexico State University

Las Cruces, New Mexico 1982

Dr Javin M. Taylor, Chairman

This dissertation describes the author's research in 1)

the design and development of small general purpose

bit-slice emulators; 2) model formulation of networks using

small processors or bit-slice emulators; 3) performance
evaluation of the resultant network models; and 4) design

methods for evaluation of these nework structures.

Networks of small processing elements can have unlimited

variety. Out of the many possible multiprocessing

architectures, we have proposed three models to study in

this dissertation. These models treat von Neumann and
non-von Neumann structures and provide a basis for the

- vii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

analysis and performance evaluation of various parallel

configurations of small LSI processing elements, such as

microprogrammable bit-slice devices. The three parallel

architecture models analyzed are 1) the controlled

multiserver model; 2) the array model; and 3) the data flow

model.

The general purpose bit-slice emulator developed at Mew

Mexico State University is used in the network models. The

bit-slice emulator is very versatile and therefore can

easily be modified to fit various requirements. Analytic

and simulation techniques are employed in this study. For

some models, both micro and macro analyses are performed.

At the macro level, the analysis is carried out at the job

level, whereas at the micro level the analysis is concerned

with the behavior of the system at the instruction execution

level.

Our intent is not to compare these models nor expect them

to be universally applicable, but to provide building blocks

and various approaches. We beleive that this contribution

will assist network researchers in effectively constructing

and evaluating their own particular network models.

- viii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONTENTS

LIST OF FIGURES.. xii

LIST OF TABLES.. xvi

Chapter

I. INTRODUCTION 1

GOALS AND B AC K G R O U N D 1
MOTIVATION 4
DISSERTATION ORGANIZATION 5

II. A GENERAL VIEW OF MULTIPROCESSING SYSTEMS AND
THEIR CLASSIFICATION......................... 10

VON NEUMANN STRUCTURES 10
NON-VON NEUMANN STRUCTURES 15

Direct Execution Machine (D.E.M.) 15
Data Flow M a c h i n e 18

PARALLELISM IN COMPUTER ARCHITECTURE 19
CLASSIFICATION OF COMPUTING SYSTEMS 21

Flynn Classification Scheme 21
Handler Classification Scheme 25

EXAMPLE OF EACH ORGANIZATION T Y P E 28
Pipeline Processor 29
Array Processing............................. 32

III. A MODULAR BIT-SLICE PROCESSING ELEMENT (PE) . . . 38

INTRODUCTION 38
THE ALU U N I T42
THE CONTROL U N I T 43

The Sequencer Unit (A M 2 9 1 0) 45
Operation of The Control U n i t 48
The Control S t o r e 48
Condition Code Mux (C C)49
The Interrupt Control Unit (AM2914) 49

IV. QUEUEING AND SIMULATION CONCEPTS 51

INTRODUCTION 51
QUEUEING PRINCIPLES 53

Basic Relationships......................... 54

- ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Markov Process 56
Networks of Queues........................... 57

SIMULATION PRINCIPLES 59

V. THE CONTROLLED MULTISERVER MODEL 63

INTRODUCTION 63
SYSTEM ORGANIZATION 63
SYSTEM ANALYSIS 65

The Analytic M o d e l 67
State diagram derivation 70
Derivation of the state equations 71
Solution of the analytic technique . . . 81

The Simulation Model 82
ANALYSIS OF RESULTS............................. 86

VI. A PROGRAMMABLE ARRAY MODEL 98

INTRODUCTION 98
SYSTEM ORGANIZATION 99
HARDWARE ARCHITECTURE 100

Processing Elements (PE's) 100
The Control S e c t i o n 101

ANALYSIS OF THE ARRAY MACHINE..................110
The Analytic M o d e l 111
The Simulation Model 120

POSSIBLE APPLICATION EXAMPLES 124
ANALYSIS OF RESULTS............................ 132

Macro-Analysis of the Array System 133
Micro-Analysis of the Array Model 142

REMARKS... 147

VII. DATA FLOW M O D E L148

DATA FLOW C O N C E P T S 148
DATA FLOW PROGRAM EXAMPLE......................149
THE BASIC HARDWARE UNITS FOR A DATA FLOW

S Y S T E M152
The PEQUE to PE Connection..................153
The Processing Element (P E) 153
The Queueing Circuit 155
The Memory Section.......................... 157

THE DATA FLOW M O D E L 159
The Analytic M o d e l....................... 16 1
The Simulation Analysis 168

Case 1 169
Case 2 169

ANALYSIS OF RESULTS............................ 174

- x -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

VIII. SUMMARY AND CONCLUSION 181

SUMMARY...................................... 181
FUTURE APPLICATION 185

LIST OF R E F E R E N C E S186

Appendix
page

A. SOLUTION FOR THE CASE N=3 AND C=3 OF THE
CONTROLLED MULTISERVER MODEL OF CHAPTER V 192

B. THE ANALYTIC PROGRAM FOR THE CONTROLLED
MULTISERVER MODEL OF CHAPTER V 194

C. THE SIMULATION PROGRAM FOR THE CONTROLLED
MULTISERVER MODEL OF CHAPTER V 197

D. THE ANALYTIC PROGRAM FOR THE ARRAY PROCESSING
MODEL OF CHAPTER V I 20 3

E. THE SIMULATION PROGRAMS FOR BOTH ARRAY MODELS OF
CHAPTER V I 206

F. THE ANALYTIC PROGRAM FOR THE DATA FLOW MODEL OF
CHAPTER V I I 212

G. THE SIMULATION PROGRAMS FOR BOTH MODELS OF THE
DATA FLOW SYSTEM OF CHAPTER V I I 215

- aci -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure
page

1. The Basic Organization of a von Neumann Machine . .12

2. Basic Task Execution Flow.............................13

3. Organization of a Direct-Execution Computer..........16

4. The Four Flynn Classifications...................... 23

5. The Possible Diagram for C=(2,5,-).................. 27

6. A Four-Stage Pipeline System 31

7. The Throughput Versus the Number of Stages in a
Pipeline System 33

8. The Relation Between the Percent Throughput and the
Number of Tasks Waiting.......... 34

9. Basic Configuration of an Array System 36

10. The Organization of the Complete ILLIAC IV Computer 37

11. The Microinstruction Field Layout 41

12. The Basic Bit-Slice Design 44

13. The Modified ALU B o a r d 46

14. The Basic Block Diagram of the A M 2 9 1 047

15. Some Random Variables Used in the Queueing System . 55

16. The Basic Flowchart for Simulating a M o d e l61

17. The System Block Diagram......................... . 64

18. A Detailed System Organization 66

19. The Overall Queueing Structure 67

- xii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20. The Simplified System Model 69

21 . State Transition Diagram for the Controlled
Multiserver System 72

22. The State Transition Diagram for the Second Case . . 84

23. Sub-State Transition Diagram for n=5................ 85

24. The Simulation Flowchart for the Controlled
Multiserver Model 87

25. The Utilization Versus the System Capacity 89

26. The Throughput Versus the System Capacity 90

27. The Utilization as a Function of 93

28. The SPE Utilization as a Function of n 95

29. System Throughput as a Function of n 96

30. The Average Queue Length as a Function of n 97

31. A Block Diagram of the S y s t e m 99

32. The Simplified PE Block D i a g r a m 102

33. The Microinsruction Fields 103

34. The Complete System Organization 105

35. The Interconnection Network 106

36. The Arrangement of the Data Mux for a 4-PE Array
S y s t e m ... 107

37. The Two Interconnection Networks.................... 109

38. The Queueing S y s t e m 110

39. The State Diagram for the System.................... 112

40. The Simulation Flowchart for the Macro Model . . . 122

41. The Composite Flowchart for the Array Model . . . 123

42. The Flowchart for the First E x a m p l e 126

43. The Uniprocessor Versus the Array System Cycle
Requirements 128

- xiii -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44. The Flowchart for the Second Example.............. 130

45. The Main and Local Memories Contents.............. 132

46. The PE and System Utilization as a Function of X . 134

47. The Average Queue Length as a Function of X • • • 136

48. The Utilization as a Function of 137

49. The Average Queue Length as a Function of n . . . 138

50. The Utilizations as a Function of 139

51. The Average Queue Length as a Function of c . . . 140

52. The Utilization as a Function of n and X

53. The Utilization as a Function of 144

54. The Utilization as a Function of the Arrival Rate 145

55. The Average Queue Length as a Function of X • • •

56. The Data Flow G r a p h 150

57. The Basic Blocks of a Data Flow System............ 152

58. The PEQUE to PE connection......................... 154

59. The PE Circuit Diagram............................. 156

60. The Basic Blocks of the Memory Section............ 158

61. The Queueing Model of a Data Flow System.......... 161

62. The State Transition Diagram 162

63. The Simulation Flow Chart for Case 1 170

64. The Example Program to be S i m u l a t e d171

65. The Simulation Flowchart for Case 2172

66. The Memory Cells for the Program of Figure 64 . . 173

67. The Processing Elements Utilization as a Function of
 ... 175

68. The Throughputs as a Function of 176

- xiv -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69.
70.

71.

Average Queue Contents as a Function of n 177

The PE Utilization for the Second C a s e179
The Average Queue Contents for the Second Case . . 180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

Table
page

1. The Utilization of Individual SPE's (vj/sO.616) 91

2. The Utilization of Individual SPE's &j/=1.5152) . . . 92

3. The Total Throughput of the SPE’s 92

4. Definitions of the S i g n a l s155

- xvi -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter I

INTRODUCTION

1.1 GOALS AND BACKGROUND

The purpose of this research is to develop models and

procedures for analyzing the performance of networks

consisting of large numbers of small processing elements.

We envision these small processing elements as, perheps,

microprogrammable bit-slice devices or single board

microprocessors. However, this is not a restriction a3 to

the use of the models presented.
The motivation for this research grew out of studies and

development of reconfigurable architecture and universal

cascadable bit-slice emulators for the US Army White Sands

Missile Range. In this research, a bit-slice emulator was

developed to emulate 8-bit and 16-bit microprocessors, as

well as special purpose networks such as array processors.

It became obvious that if these bit-slice emulators had the

desired reconfigurability, the next step was that of

developing generalized procedures for constructing models

and analyzing networks comprised of these emulators.

- 1 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

This dissertation describes the author's contribution to

this research, which includes 1) design and development of

the control portion of the bit-slice emulator, 2)model

formulation and analysis for three types of networks

comprised of bit-slice emulators, and 3) design methods for

evaluation of these network structures.

Networks of small processing elements can have unlimited

variety. Consequently, in this research the scope has been

narrowed to the study of three network models. A practical

methodology is developed and applied to the performance

investigation of these three structures. Each structure is

studied by itself. The main interest is the construction

and analysis of a mathematical model for each structure.

Analytic and simulation programs are developed to enhance

our study. This research is particularly appropriate due to

recent research efforts in VLSI, the introduction of 16-bit

microprocessors, and the development of radically different

LSI architectures, such as the recently announced Intel 432.

Since its invention, the computer has gone through many

developmental stages. As more complex jobs are created, the

need for developing faster and faster machines becomes more

imminent. With the continuously decreasing cost of

microprocessors and other LSI chips, the notion of using

large arrays of these devices to perform in parallel becomes

a practical one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3
In parallel processing more than one processor is used to

accomplish the processing of a given job, provided that this

job is applicable in a parallel processing environment.

Parallel processing is often refered to as multiprocessing

or multiprogramming. Multiprocessing is defined as the

simultaneous processing of two or more portions of the same

program by two (or more) processing units. Multiprogramming

is defined as the time and resource sharing of a computer by

two (or more) programs residing simultaneously in primary

memory. Parallel processing can include either of the above

or a combination of them.

Why are there so many different computer configurations

and by what criteria can the performance of a computer be

judged? Some typical criteria are the speed, reliability,

versatility, programming convienence, cost, and most

importantly the computing power. The computing power

includes parameters such as the number of bits per word, and

the size of the main memory, plus others.

Many of the computer architecture innovations are mainly

motivated by the need for processor speed. The processor

speed and computing power are critical to some real time

analysis, such as pattern recognition, image analysis, and

information gathering from satellites.

Over the last twenty years, a great deal of research

effort has been devoted to the development of performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

evaluation of large computer systems [R0BL81], [SAST73'], and

CDENN78]. Now, with the interest in networking, the time

has come to study performance models of parallel

configurations of LSI processing elements tW0NG78l.

1.2 MOTIVATION

The term "performance evaluation" typically implies the

evaluation of large computers. While it is generally true

that it is not cost effective to analyze the performance

evaluation of small systems employing a few microprocessing

elements, it does become cost effective to evaluate the

performance of such systems when considering the

implementation of hundreds of these devices in a parallel

architecture. Due to the availability and the lower cost

associated with LSI chips, future systems will emerge that

use these microprocessing elements, [BRIG79 1, and [HWAN81 1.

Thus, devising algorithms to analyze and evaluate their

performance is important.

Out of the many possible multiprocessing architectures,

we have proposed three models to study in this dissertation.

These models provide a basis for the analysis and

performance evaluation of various parallel configurations of

small LSI processing elements, such as microprogrammable

bit-slice devices. The three parallel architecture models

analyzed are

1 . The controlled multiserver model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. The array model

3. The data flow model.

The general purpose bit-slice emulator developed at New

Mexico State University is used in the above models. The

bit-slice emulator is very versatile and therefore can

easily be modified to fit our needs. Some minor

modifications are discussed in order to make the designed

system applicable to a parallel processing environment. Von

Neumann and non-von Neumann architectures are pursued.

Simulation and analytic techniques are developed in order to

analyze the different systems studied.

The basic measures of performance that are considered

are as follows:

1. Processing element utilization.

2. The control unit utilization.

3. The total system throughput.

k. The average queue length (where applicable).

1 . 3 DISSERTATION ORGANIZATION

The material presented in this dissertation is divided

into two main parts. The first part, chapters II through

IV, discusses the basic issues of parallel architecture,

such as the different classes of system organization and the

different classification schemes, basic microprogrammed

emulation, and performance evaluation analysis techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The second part, chapters V through VII, focuses in on

several different models proposed for parallel processing

and the resulting performance evaluation analysis.

Chapter II discusses the basic types of parallel computer

architectures. Two architectures in general are viewed: the

von Neumann and the non-von Neumann architectures. The

direct execution computer and the data flow computer are
used as examples of the non-von Neumann machine, whereas the

array and pipeline machines are used as examples of the von
Neumann machines. The schemes used for classifying

computing systems are also reviewed. Basically two
classification schemes are discussed, the Flynn

classification scheme and the Handler classification scheme.

The basic processing element that is used in the models
of chapters V through VII is discussed in chapter III. The

principal blocks of the control unit and the processing unit
sections are presented. The processing element consists of

an ALU unit and a control unit. The basic ALU unit (which

can be increased by orders of 8) is an 8-bit bit-slice

machine using the Am2903 (the super slice).

Chapter IV reviews the basic concepts of queueing such as
the arrival rate, the service rate, and the queueing
discipline. Due to its importance in this analysis, the

"network of queues" method is presented. The general

simulation flow graph is also discussed. The APL language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is used for the analytic case while GPSS language is used

for the simulation study. Poisson arrival and exponential

service times are employed in most of the models studied.

In chapter V, the proposed model for the controlled

multiserver system is presented. In the controlled

multiserver model, several processing elements (PE’s), each

with a specific function, are employed. All the PE's are

controlled by a single central control unit and are

activated via an instruction analyzer. The mathematical

model is studied using two methods: analytic and simulation.

Th'.s model is particularly good in application programs

where there are only a few number of operations and each

group of instructions is executed repeatedly.

The second model, the array model, is presented in

chapter VI. Unlike the model of chapter V, all the PE's or

a subset of the PE set are utilized in executing an incoming

job. The PE's allocated to the incoming job are assigned

using a probability selection vector of size (nx1), where n

is the number of PE's. In this analysis we assume that

there are always a sufficient number of processing elements

to serve the incoming job. An alternative assumption is

that there are not enough processing elements to serve the

incoming job. This assumption is not necessary in our

network research, but the model proposed can be extended to

this case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The array model is analyzed from two different points of

view. The macro-model is associated with the job execution

in the system. That is, the entity unit in the system is

the job as a whole. The macro-model is analyzed with both

analytic and simulation methods. The results obtained in

the two cases are shown to be similar. The second model,

the micro-model, is associated with the instructions in the

system, and a fixed number of jobs are considered. The

micro-model is analyzed using simulation techniques only.

The array model is good for vector-type and matrix-like

problems. In general the array systems are very specialized

and are tailored for specific application and environment.

Failure of any processing element in the system will bring

the whole system to a halt.

Lastly, the data flow model is presented in chapter VII.

Unlike the two models of chapters V and VI, the data flow

model is an example of a non-von Neumann machine. The

parallelism in the data flow system lies in the fact that

all the processing elements can be busy simultaneously

performing distinct operations. Similar techniques are used

to analyze the data flow system. The simulation analysis is

performed in two parts: macro and micro-analysis. The

macro-model which is also analyzed by the analytic technique

yields similar results. The micro-analysis, on the other

hand, simulates an actual program execution thus providing a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

good tool for the performance evaluation of the real

hardware. This kind of system is suitable for programs that
employ parallelism. Failure of any PE should have

negligible effect on the overall throughput of the system.

Finally, chapter VIII summarizes the results obtained in
this dissertaion and discusses the future research of

multiprocessors.
Part of the research described in this dissertation was

supported by the Instrumentation Directorate at White Sands

Missle Range under contract #DAAD07-81-C-0094,

"Demonstration Prototype Cascadable Microcomputer Module."

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter II
A GENERAL VIEW OF MULTIPROCESSING SYSTEMS AND

THEIR CLASSIFICATION -

2.1 VON NEUMANN STRUCTURES

The basic characteristics and architecture of digital
computers was first set forth in a systematic manner by the
mathmetician John von Neumann in 19^5. A computer that
follows the von Neumann structure is referred to as a von
Neumann machine. Figure 1 shows the basic organization of
a typical von Neumann machine. A von Neumann machine is
said to have the following properties:

1. A single sequential memory.
A program and its data are stored intermixed in a
single memory, and the memory is referenced with
sequential addresses.

2. A linear memory.
The memory is one-dimensional, that is, it has the
appearance of a vector of words.

3. No explicit distinction between instructions and
data.

- 10 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4. Meaninst is not an inherent part of data.

The meaning of data is assigned by program logic.

That is, the interpretation of a pattern as an

instruction or a datum depends on the state of the

machine when the code is fetched from the memory. If

the state of the machine dictates that the code

should be transferred to the control unit, then that

code is interpreted as an instruction. On the other

hand, if the code is transferred to a register, then

it is treated as data.

5. A program counter.

A register which is used to indicate the location of

the next instruction to be executed and which is

automatically incremented with each instruction

fetch.

A typical von Neumann machine consists of three basic parts:

1) A central processing unit.

2) A program storage unit.

3) A tube connecting the cpu to the store. The address

to the st.ore is sent through this tube. This tube

is sometimes refferred to as the von Neumann

bottleneck [BACK78] .

Thus the von Neumann machine employes a single instruction

stream which will operate on a single data stream.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

Mem.

ALU

IR

PC MAR

MDR AC

Figure 1: The Basic Organization of a von Neumann Machine

These kinds of machines are usually known as uniprocessors.
The speed of processing a certain process (or task) is,
therefore, dependent on the speed of this single CPU. The

execution of a task in the von Neumann machine follows the

flowchart shown in Figure 2.

In order to overcome the execution restriction in the

von Neumann architecture, various multiprocessing schemes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

•'Need
.rguments

Instruction
Fetch

Execute
Instruction

Access from
Memory

Figure 2: Basic Task Execution Flow.

have been devised. We will briefly discuss the different

classes of multiprocessing systems that exist. Also a brief
discussion of the different multiprocessing classification

schemes will be outlined in the next section.
Before going on with the details, let us define the

following terms so that whenever they are referred to in the
context of the discussion in this dissertation, these

definitions will apply.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1. Multiprocessor: A group of computing units each with
its own instruction stream and data stream sharing a
common memory and control unit. The ANSI (American
National Standard X8.-1970) definition of
multiprocessor is given as: "A computer employing
two or more processing units under integrated
control.n

2. Multicomputer: Independent computers often with one
acting as a supervisor in performing a common task at
a single location.

3. Computer Network: Independent computers at different
geographical locations connected by a communication
channel. A unique resource at one site can be
available to all the members of the network.

4. Concurrency: This property is associated with two or
more activities that are in progress simultaneously;
e.g., the central processing unit can be executing
instructions from some task at the same time a
peripheral processor is carrying out an input/output
operation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15
2.2 NON-VON NEUMANN STRUCTURES

The concept of non-von Neumann machines has been the

concern of research in computer architecture for many years.

Some interesting machines have been proposed and built.

Examples are the data flow computer [DENN80a] ,

[KELL80] , [COTE78],and [JOHN80], the direct execution machine

[CHU81], and the early SYMBOL computer [DITZ81]. In chapter

VII we will concentrate more on the data flow computers and

will attempt to model a basic machine. A simulation program

is developed by which the performance of such machines can

be studied.

2.2.1 Direct Execution Machine (D.E.M.)

An example of a non-von Neumann architecture is the

direct execution machine discussed in [CHU81] . The basic

organization of a direct execution machine is shown to

consist of three processors, which are as follows:

1. The lexical processor

2. The control processor

3. The data processor

The lexical processor assembles source program (of a high

level language) characters from the program memory into

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

tokens such as operators, reserved words, names, and
numbers, then delivers them to the language processor (which
in turn consists of the control and the data processor).
The control processor executes tokens which are part of the
control flow, whereas the data processor executes tokens
which are part of the data flow. Figure 3 below showes the
basic organization of a direct-execution computer (D.E.C.).

Bus

Data
Proc

Cont,
Proc,

Lexical
Proc.

Data
Memory

Program
Memory

Control
Associative
Memory_____

6ata
Associative
Memory

Figure 3: Organization of a Direct-Execution Computer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17
Examples of a detailed program storge and organization of a
direct-execution machine are found in tCHU81] .

A direct-execution computer executes the tokens of a high
level language rather than a compiler-generated machine
code. In contrast, an indirect-execution computer first
translates a high level language into an intermediate
language such as polish string, and then executes it by
hardware.

The direct-execution machine differs from the von Neumann
architecture in the following way:

1. In the basic von Neumann architecture, the program
code and data are stored in a single memory, whereas
in the D.E.C. the program code is stored in the
program memory and data is stored in the data memory.

2. The conventional cpu of a von Neumann machine has
been split into two separate processors: the control
processor and the data processor. Therefore the
control processor executes tokens which are part of
the program control flow, while the data processor
executes tokens which are part of the data flow. In
the von Neumann architecture, the cpu executes both
the control instructions such as branch, jump to
subroutine, and the data manipulation instructions
such as add, multiply.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

3. The D.E.C. offers an increase in the instruction
execution rate; the lexical processor operates in
parallel with the data and the control processor.

2.2.2 Data Flow Machine

The data flow architecture is considered a non-von
Neumann architecture, as was mentioned earlier. Like any
computer, the data flow also sequences through the
instructions. However, there is no program counter (PC) to
be updated each time an insruction is fetched. Instead, the
sequencing of instruction execution depends only on the
availability of the operands required by the instruction.

Data flow machines are constructed of modules and the
communication between these modules is asynchronous. In
his dissertation, Rumbaugh clearly outlines the construction
of a basic data flow multiprocessor [RUMB751. The principle
advantage of the data flow multiprocessing system over
conventional multiprocessing systems is reduced complexity
of the processor memory connection. The instructions in a
data flow machine reside in the main memory, and as the
oper?.nd3 for a particular instruction (which are specified
either initially or are provided during the course of
execution of other instructions) are available, then that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

instruction is ready, regardless of the states of other
instructions. When an instruction execution is completed,
the result is provided to all other instructions that
require it. We will explain this principle in more detail
with illustrative examples in chapter VII.

The kind of algorithms executed in a data flow machine
are assumed to have enough parallelism in order to fully
utilize the processors. As it will be shown later, the data
flow concept will be beneficial only for a particular class
of programs.

The architecture of a data flow computer resembles that
of a pipeline system. In a pipeline machine, each preceding
unit passes on the ready task (or portion of a task) to the
next unit for attention. Unlike the conventional pipeline,
the instructions in a data flow pipeline must come back to
where they started from, i.e., the first unit. Thus the
data flow machine could be considered as a circular
pipeline.

2*3 PARALLELISM IN COMPUTER ARCHITECTURE
When speaking of parallelism in computer architecture,

one should be aware of the different levels and kinds of
parallelism within a specific system. For example, there
can exist the following:

1. Parallelism between jobs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

2. Parallelism between subroutines in a run

3. Parallelism between instructions

4. Parallelism between stages in an instruction

(Hardware level)

For instance, if two equations in an algebraic system are

independent of each other and the solution of one variable

does not provide an input to the other equation, then these

two equations could be processed simultaneously. Therefore,

parallel execution of tasks within the same job has

occurred. In other situations, parallel execution of two

independent jobs concurrently can take place. In a

multiprocessor system where more than one processor is

controlled by the same control unit, several jobs can be

processed within the same time frame. In other parallel

executions, the control unit which controls several

identical processing elements is used to direct all the PE

units with the same instructions, but each PE does its own

data manipulation. This type of parallel system is called

"array processing."

Various configurations of more than one processing

element has resulted in a variety of parallel systems. Each

system has its own characteristics, which leads to certain

advantages and disadvantages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

2.4 CLASSIFICATION OF COMPUTING SYSTEMS
Due to the growth of contemporary computer technology, it

seems a little difficult to create a classification scheme
for the different types of computing systems. Several
classification schemes have been proposed in the past two
decades: Flynn classification in 1966 [FLYN66], Feng
classification in 1972 [FENG72], and The Handler scheme in
1977 [HAND77]. Each of the above schemes tries to include
most of the contemporary systems; nevertheless each suffers
from some deficiency. We will discuss the first and the
last scheme in some detail.

2.4.1 Flynn Classification Scheme
In 1966 M.J. Flynn puplished a paper in which he

classified the different computer structures using the
stream concept. Stream simply means a sequence of items
(instructions or data as executed or operated on by a
processor). The four broad classifications of machine
organizations which he defined are given below:

1. SISD:
Single-instruction stream - single-data stream
organization. This kind of organization represents
the basic von Neumann structure and includes the
class of uniprocessors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. SIMD:
Single-instruction stream - multiple-data stream
organization. This kind of organization includes
most array processing systems, e.g., ILLIAC IV,
Goodyear corporation STARAN, and SOLOMON. The array
processing systems employ a single control unit along
with a single instruction stream to serve a group of
processing units.

3. MISD:
Multiple-instruction stream - single-data stream
organization. Some authors tend to include pipeline
processors in this category. The data passes through
different consecutive stages where in each stage a
seperate instruction stream is applied.

4. MIMD:
Multiple-instruction stream - multiple data-stream
organization. This includes most multiprocessing
organizations. Univac has proposed many different
MIMD organizations.

The above classes could be quantified somewhat by
specifying the number of streams of each type in the
organization or the number of instruction streams per data
stream or vice versa [FLYN72] . A pictorial of the four
different organizations is shown in Figure 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

•23

tion
Scream

Data
Stream

Processing
Unit

Control
Unit

Memory

a) SISD

Instruction Stream

Data Common contro .
signalsStream If 1

D.S. //n

Proc.
Unit 1

Proc.
Unit n

Proc. Control
Unit

Memory

b) SIMD

Figure H: The Four Flynn Classifications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

Data Stream

S trean C.U.

*nsVtream C.U.

Memory
Proc

Ins
Stream C.U.

c) MISD

•H
4J •H

CM

U
l-l W M

Memory

Proc.
Unitn

Cont.
Unitl

Proc.
Unitl

Cont.
Unit 2

Proc
Jnit2

Cont
Jnitn

d) MIMD

Figure 4 (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25
The limitation of the Flynn classification lies in the

definition of MIMD. The MIMD is very broad in the sense
that it does not mention the type of connection used, i.e.,
whether the processors are connected via a bus system or can
access multiport memory. Furthermore, some authors tend to
include various types of pipeline computers in the MISD
class. It is inappropriate to do this since the different
types of pipelining are not distinguishable.

2.4.2 Handler Classification Scheme

Handler has proposed a different classification scheme
for computing systems. In some regards, the Handler scheme
is more explicit than the Flynn scheme. It is also known as
the Erlangen Classification Scheme, (E.C.S.) t HAND771 . Each
system is represented by a triple:

C = (K, D,W)
k = The number of control units
D = The number of ALU’s controlled by each CU
W = The i-unit length of the entities managed by the D's

For example, for the following systems the triples are given as:
System
IBM System/370

Triple

CDC 6400
(1,1,32)
(1,1 ,60)

IBM System/360 dual processor (2,1,32)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

ILLIAC V (1 ,64,64).

C.mnp (16,1 ,16)

Further, the classification could be written in the form

ixi' where i' indicates the parallelism or the number of

pipeline stages in the ith component. Then, in KxK' , K1 is

the number of independent computers of the same type of

processing programs. In DxDf , D' is the number of

functional units or ALU's per processor. And in WxW' , W'

is the number of stages in a pipelined ALU.

Examples:

TI ASC = (1,4,64x8)

CDC 6600 = (1,1x10,60)

Clearly the fC and D parameters would indicate the type of

computer system. For example, K=1 and D=1 would be

equivalent to an SISD structure, and K=1 and D=n where n.1

would be an SIMD system. The Handler classification suffers

from the following limitation: It does not explicitly or

implicitly define the kind of parallelism used. It only

specifies the number of units of each kind and does not

mention the interconnection. For instance, C=(2,5,-)

signifies a system consisting of two CU's each having five

PE's, as indicated in Figure 5.

In this regard, the Flynn classification is more

specific. The other problem from which the ECS suffers is

the inherently binary nature of the definition of W (the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

E5

CU

CU

PEI

PEI

E5

PE

CU ICU

PE4

Fieure 5: The Possible Diagram for C=(2,5,-)

word length). That is, if a computer is based on another
modulo number system, then the ECS should be modified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

2.5 EXAMPLE OF EACH ORGANIZATION TYPE

The currently existing parallel machines are pipeline

machines, array machines, associative processors, cellular

machines, and multiprocessors. The first three machines are

useful for a restricted class of problems, whereas the

fourth is extremly hard to program and as a result is not

very popular. Different multiprocessing systems exist, but

the software for these processors takes a considerable

effort to build.

The major problem confronting the parallel systems in

general is how to use such systems as efficiently as

possible, i.e., utilizing the full power of the PE’s. At

present, technology can provide the necessary hardware to

develop a super multiprocessing system, but such a system is

futile without the required software. The efficiency

(throughput) of a computer system can be increased by

intensifying the usage of system resources which are either

active or passive. Active resources such as processors

(both for data and I/O) perform the calculations and move

information to other parts of the system; passive resources

such as memories, registers, and bulk storage devices hold

information produced by the active resources for later use.

Furthermore, as the number of PE's increases, the

processor-to-memory interconnection grows and becomes more

complex. The interconnection problem is an extensive

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29
research area by itself and will not be discussed here. The

December 1981 issue of COMPUTER magazine is devoted to the

problem of interconnection in computer networks.

In this section we will discuss two types of

organizations: the pipeline and the array system. The

array system will be discussed in more detail in chapter VI.

Somewhat detailed analysis of pipeline system is done in

this section. Moreover, more examples of multiprocessing

systems are found in [ENSL7U].

Recently two articles have been written that are totally

devoted to the bibliographies on the subject of

multiprocessing systems: [L0UI81], and [SATY80]; more than

250 citations are referenced in these articles, and are

considered a valuable source in the subject.

2.5.1 Pipeline Processor

The basic philosophy in pipelining is to break up the

task into a number of subtasks which in turn are operated on

in a manner similar to the assembly line technique. In

effect the system is divided into several functional units,

where each unit is assigned a specific task. A speed-up

factor of more than two orders of magnitude can be obtained

compared with the uniprocessor. Typical pipeline systems

are uniprocessor systems with concurrent SISD organization.

Some examples of pipeline systems are the Control Data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

Star(CDC Star-100) and the Texas Instrument ASC system. The

IBM 370-195 employs a pipeline floating-point multiply unit.

In TI ASC and CDC STAR-100 pipelining is employed to perform

the same arithmetic operations on a series of operands as

they progress down the pipeline. Keeping the pipeline full

is the main desire in exploiting the system characteristics.

Since the pipeline system is not modeled in this study, it

is worthwhile at this point to get some insight into the

basic performance of a typical pipeline organization. We

will investigate the throughput as a function of the number

of stages and the jobs in the system.

A pipelined process is decomposed into a series of

sequential subprocesses and each subprocess uses one stage

of the pipeline. Each stage is isolated from its neighbors;

therefore, overlapping will occur. For example, consider a

pipeline system consisting of four stages. Starting with the

system empty, then at t = t1 , stage 1 is busy on the first

job, whereas stages 2-4 are idle. At t=t2, stage 2 will be

busy serving job 1 while stage 1 is receiving process 2, and

so on. The diagram below illusrates this mechanism.

Let k = the number of processes waiting in the system,

n = the number of stages (or system capacity),

and let k=n=4 for this particular example.

Then the total execution time is given as

T = n x t + (k-1) x t

= 4t + 3t = 7t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

Different
Jobs _e n v 0

Time t = tl o

CM4JII4J V o
t = t3 a ▼ o \
t = t4 a V o ^ V

out
t = t5 • □ V out
t = t6 • □ V 'out
t = t7 • out

<

S tagel Stage2 . . Stage4 out

Figure 6: A Four-Stage Pipeline System

or (7/4) time units per stage. Therefore, it will take 7

time units to flush out the system. Comparing this pipeline

system with one that consists of only one stage, with each

process taking 4 time units, it will take 16 time units to

process all four jobs. A considerable gain is achieved in

the throughput for the pipeline system. The improvemnt

factor is over 50^ for this simple case. Note that the

overall throughput performance depends also on the

availability of jobs in the system.

The curves of Figures 7 and 8 illustrate that the

throughput is directly proportional to the number of stages.

The assumption that is made in all of the above cases is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

availability of jobs. In Figure 7, the curves show the

throughput of a pipeline system versus the number of stages

in the system. Since the principle time unit is the same

for all the cases (i.e., the time a process spends from

stage 1 to stage n is the same), it should be expected that

as the number of stages increases then the probability of

overlapping would increase. Thus the utilization of the

stages would increase, which in turn results in a higher

degree of throughput. However, Figure 8 illustrates the

relationship between the percent throughput and the number

of tasks waiting in the system.

2.5.2 Array Processing

In the SIMD system, as mentioned before, the control unit

CU dispatches the instructions to the processing elements

PE's; consequently, all active PE's execute the same

instruction simultaneously. Each active PE executes the

instruction on its own data in its own memory. The

interconnection network provides communication among the

processing elements. This type of machine structure is

designed to exploit the parallelism of tasks such as vector

and matrix-like problems.

The array systems, however, do have some drawbacks which

we will mention in brief. The major drawback of the

existing array systems is thsir ineffective use of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

U
U•H
n 3 o
CO k«15COcO
4J

U
p 6a.xtr.
POu
XH

k-7

4

k-3
2

0
i n l i £ 12Number of Stages

Figure 7: The T h r o u g h p u t Versus the N u m b e r of Stages in a
P i p eline S y stem

U)
U)

www.manaraa.com

perm
ission

of the
copyright

ow
ner.

Further
reproduction

prohibited
w

ithout
perm

ission.

o

N=4
N = 5
N = 6

N=10

50

5

12 16 2 0
Number of C o n s e c u t i v e Jobs

Figure 8: The R e l ation B e t w e e n the Percent Thr o u g h p u t and
the Numb e r of Tasks Waiting

www.manaraa.com

35
available hardware resources. This fact is due to the

synchronous operation of all the processors working in the

array. The number of parallel data streams are not fixed,

and in the case where the number of data streams decreases,

there will be some idle processors. Thus far it has not

been possible to put the idle processors to work JREDD760.

Furthermore, the cost of such systems is quite high. It is

worthwhile to note that the typical number of processing

elements in an array system is greater than 64, whereas in

the pipeline processor system, the typical number of

processors is 1. The basic configuration of an array

processor is shown in Figure 9*

The first work done in the array processing area was on

SOLOMON I and II. This work led to the ILLIAC IV system.

SOLOMON contains 1024 processing elements in an array of

32x32 P E ’s. All the PE's are under the control of a single

control processor. On the other hand, the ILLIAC IV

includes 256 PE's, each more powerfull than the PE's of

SOLOMON. The 256 processing elements are arranged in four

quadrants, of 8x8 PE each, with a separate CU for each

quadrant. Each PE has a private memory of 2k 64-bits words.

Figure 10 illustrates the organization of the complete

ILLIAC IV computer system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

Supervisor
Processor

Control Processor or
Network Distribution

Figure 9: Basic Configuration of an Array System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

37

M a s s .
Mem.

C.U

Central
Control
P r o c .

Array

PE
8x8

Array
of 64
PE
8x8

64 PE64 PE

I/O Switches

Figure 10: The Organization of the Complete ILLIAC IV
Computer

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter III

A MODULAR BIT-SLICE PROCESSING ELEMENT (PE)

3.1 INTRODUCTION

The NMSU modular bit-slice emulator (MBSE) which the

author helped develop will be used as the basic processing

element in our investigation of parallel multiprocessor

architectures. Due to its microprogramming ability, the

NMSU-MBSE system provides an excellent machine to be used in

the various models proposed.

Bit-slice microprocessors in general are more versatile

than the single chip microprocessors. On the other hand,

they are more difficult to program. Their use is often

somewhat limited to the application for which they are

designed. But if they are designed to emulate another

processor, then the user should see little difference

between the real processor and the emulated one except in

instruction execution time. Bit-slice microprocessors are

k nown as variable instruction set microprocessors, in

contrast to the fixed instruction set microprocessors. The

flexibility associated with the bit-slice machines makes

them very desirable in certain engineering applications.

Emulation is a combined hardware-software (firmware)

- 38 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39
approach to the process of modeling the characteristic of

machine Y (the target) on machine X (the host). The code in

machine X makes it appear as machine Y to the user.

Consequently, the user can write the software for machine Y

by using only machine X. In other words, emulation is a

complete set of instructions which, when stored in the

control store of a bit-slice microprocessor, defines a new

machine.

Due to their microprogramming ability, bit-slice elements

play a significant role in process emulation. In this

chapter, the basic elements of a general purpose bit-slice

emulator designed at New Mexico State University are

discussed and explained in some detail.

Due to their nature, bit-slice elements play a

significant role in microprogramming. Husson [HUSS70]

proposed the following definition for microprogramming:

"Microprogramming is a technique for designing and

implementing the control function of a data processing

system as a sequence of control signals, to interpret fixed

or dynamically changeable data processing functions. These

control signals, organized on a word basis and stored in a

fixed or dynamically changeable control memory, represent

the states of the signals which control the flow of

information between the executing functions and the orderly

transition between these signal states,"p 20. A description

of recent applications of microprogramming is found in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

[RAUS80] . Furthermore, the advantages and disadvantages of

microprogrammed implementation compared to hardware

implementation is nicely outlined. Two microprogramming

techniques can essentially be specified:

1) vertical microprogramming

2) horizontal microprogramming

In vertical microprogramming, a shorter field is used, but

it takes many microinstructions to accomplish the desired

functions, whereas in horizontal microprogramming, larger

fields are used and thus fewer microinstructions are

required to perform the necessary function. The latter, of

course, has a disadvantage: the microbits are not used as

efficiently as in the former. Thus, horizontal

microprogramming, is not very economical when compared with

the vertical microprogramming. Nevertheless, the horizontal

microprogramming is used whenever speed is of concern and

importance. Maximal parallelism at hardware level can be

exploited by horizontal microprogramming. Generating the

microinstructions can be cumbersome and sometimes time

consuming.

In the NMSU-MBSE design horizontal microprogramming is

used. The microinsruction length is 108 bits long. Out of

the 108, 104 bits are pipelined and the other 4 bits come

directly out of the control store and are used to control

the 4-phase clock chip Am2925 . The microinstruction

fields are shown in Figure 11.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

11
:

Th
e

Mi
cr

oi
ns

tr
uc

ti
on

Fi

el
d

La
yo

ut

www.manaraa.com

42

3.2 THE ALU UNIT

A single ALU board constitutes an 8-bit-wide data bus.

Each additional ALU board added to the system increases the

data bus bits by a factor of 8. The ALU'S are designed in

such a way that when connecting more than one ALU together,

the proper signals are generated, which in turn specify

which board is the most significant slice (MSS), and which

is the least significant slice (LSS). In effect, each board

has two neighbors, right and left. If a board does not have

a left neighbor, then it is the MSS, and if it does not have

a right neighbor, then it is the LSS. Consequently, if a

board has neither left nor right neighbor, it is considered

to be the MSS and LSS at the same time, e.g., as in the

8-bit machines.

AM2903;

The ALU chip used in this design is the AMD AM2903, a

4-bit slice. Each board has two AM2903's. The following

characteristics are summarized for the AM2903:

1. Independent access to two different registers

2. Performs 16 arithmetic and logical functions

3. Left or right shift independent of ALU

4. Has four status lines: carry, overflow, zero, and

negative

5. Horizontally expandable to any word length

6. Has a 16 words by 4 bits registers with two ports,

expandable to any number of registers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

Figure 12 illustrates the basic organization of the

bit-slice design employed. Since the processing elements

used in the different models of chapters V,VI, and VII are

groups of independent PE'S, it is necessary to move the

status, shift, and carry control unit (the SSC) from the

central controller to each of the PE boards. After this

modification the general block diagram will be that of

Figure 13. For an 8-bit processor, only one ALU board and

one sequencer board are needed. For a 16-bit processor, two

such boards are needed along with one sequencer board, and

so on.

The additional 16 register bank (the AM29705) is used in

order to increase the total number of registers from 16 to

32 registers. When two boards are cascaded, then

multiplexers 1 and 2 in Figure 13 will bypass the AM2904 on

the L.S. board.

3.3 THE CONTROL UNIT

In a bit-slice design the control unit performs the

function of sequencing through the microinstructions. The

microsequencer, the AM2910, is considered the heart of the

control unit.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

cc
yiux

Vect
Rom

•

2914
Int. Conro Data Bus

IData Bus

2920
I. R.

Mapping
Rom

8-bit
Op-Code

2910
Sequencer Ct

Control
Store

Pipeline
r

to CPU

£
2904
SSC

Boarf

2959

Status

SIO
tjrtr

2 -

to

'Data Bus
- 8-Bits

to 2904

2920

r c

2903
ms

2903
Is

Cn

2902 “
next I pU Carry

SEQ ALU

Mux

SXO -Tyrrr

Mux
?rom

Address Reg
2920's

to other CPU

*h.6-Bits
^Address bus.

-CJr
Figure 12: The Basic B i t - S l i c e Design

www.manaraa.com

45

3.3.1 The Sequencer Dnlt (AM2910)

The sequncer chip, AM2910, has an address capability of

up to 4K of control store words. The AM2910 essentially

consists of a microprogram counter and an

instruction-decoding programmed logic array on one chip. In

addition to decoding instructions , the PLA provides three

output signals that can be used to enable any of the three

sources of the 2910's D inputs. The register counter in the

AM2910 may be used to store a branch address that is used

for a subroutine call. The AM2910 has a unique three-way

branch instruction that is useful at the end of loops. If

the input test condition is true (CT), then incrementing the

program counter will cause an exit from the loop. But if

the test condition is false, the loop counter is decremented

and the program branches back to the top of the loop until

the counter is zero, and then branchs once more to the

address specified on the direct input lines. The AM2910

makes the use of the 2909 and 2911 obsolete except for rare

applications where more than 4K range is desired. More

discussion about the AM2910 is found in [MICK78],

The 2910 provides a powerful set of instructions. It is

well suited for a high performance computer control unit.

The basic block diagram of the AM2910 is shown in Figure 14.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Dat
a

Bu
s

46

o o
Ok CO
CM CO

MCO M

CJ s

cm as

< >*

M MO'

Figure 13: The Modified ALU Board

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To
Ad
dr
es
s

Bu
s

www.manaraa.com

Data Inputs

Control.

I n c r e m e n t .

Stack
Pointer

u-program
Control Reg.

Mux, output

Subroutine

Registers

Figure 14: The Basic Block Diagram of the AM2910

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

3.3.2 Operation of The Control Unit

The macroinstructions are loaded into the Am2920

instruction register (IR). The operation code (op code) is

used as an input to the mapper Roms (AM27S13'S), which are

each 512X4. Up to 256 different op codes can be specified,

since the AM2920 provides 8 output lines. Three AM27S13's

are used to provide the 12 line inputs to the sequencer

controller (AM2910). The AM2910 receives inputs from three

different places, as follows:

1) Output of the mapping Roms

2) Output of the vector Roms

3) The branch address field of the microcode.

Depending on the test condition input to the 2910, which

comes from the condition code Mux AM2922 or from the AM2904

(the SSC), then the AM2910 will decide whether to sequence

through or to take the branch address.

3.3.3 The Control Store
The other major block on the sequencer board is the

control store. The control store consists of 1K by 108

bits. As mentioned earlier, only 104 bits are fed to a

pipeline register which is included in the AM27S27. The

control store capacity can be increased to up to 4k if

needed. The need for a larger control store arises when it

is necessary to have the microcode of more than one target

machine implemented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49
3.3.4 Condition Code Mux (CC)

Since the status, shift, and carry control unit (2904)

will be used to take care of overflow, zero, carry, and

negative conditions (the outputs of the MS 2903 on the MSS),

and produce a test signal to the Am2910, then other testing

means should be provided for the other test conditions. A

status register Am25LS377 along with a CC Mux Am2922 are

used for this purpose. The input signals to the 25LS377

will include the interrupt request (IR) signal from the

AM2914, reset, and the FULL signal output of the AM2910 plus

any other test conditions. Both the registers and the CC

mux are controlled by the microbits.

3.3.5 The Interrupt Control Unit (AM2914)

The AM2914 is an 8-bit priority interrupt circuit and is

cascadable to handle any number of priority interrupt

request levels. It implements an 8-bit mask register to

mask individual interrupts. Only eight levels of interrupts

are implemented in this design. Four microbits are

specified for the operation of the AM2914.

The vector output of the AM2914 is connected to the three

vector Roms (AM27S21), which are 256x4 each. The 12-bits

output by the vector Roms are fed to the D-inputs of the

2910 along with the other two input sources. The interrupt

request signal is fed to the CC mux, which in turn provides

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50
a teat input signal to the 2910 (the CC input), as
mentioned earlier.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter IV

QUEUEING AND SIMULATION CONCEPTS

4.1 INTRODUCTION

In recent years, performance analysis has taken a major

role in the design of computer systems. In the past two

decades, several important contributions in the field of

computer performance evaluation have been made JR0BL81£.

The performance evaluation of computer systems may be

divided into two broad categories. At the one end are the

empirical studies. This covers techniques such as

measurements and simulation. At the other end are the

analytic methods. This covers techniques such as queueing

models which depend on obtaining mathematical equations to

analyze the system. The queueing models may yield some

qualitative insight into the system behavior, but they

cannot be trusted to provide quantitative insight to drive

the architecture of the system in the desired direction

[KUMA80]. The simulation technique suffers from the cost of

carrying out such experiments. On the other hand, the

analytic technique suffers from the time spent developing

these equations. Kumar [KUMA80 1 gives a detailed

hierarchical approach to performance evaluation of computer

- 51 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

s y s t e m s .

Moreover, there exist a number of different algorithms to

analyze the performance of queueing systems. Some of these

algorithms are the mean value analysis algorithm lHEIS8ol,

the approximation technique algorithm [SAUR75], and the

numerical methods. These mathematical algorithms are often

used to analyze large computer systems and networks. In
large computer systems, however, there is one factor that

plays a significant role in analysis and this is the degree

of multiprogramming. The degree of multiprogramming is not

of great importance when analyzing systems of

multi-microprocessors. The degree of multiprogramming tends

to complicate the situation even more. With a small degree

of multiprogramming the number of 3tates grow enormously,

n a m e l y ,

where M equals the number of devices and N is the degree of

multiprogramming. In a multiprocessing system implemented

with microprocessors, more than one processor is used at a

time, but always with one user or with one program in the

main memory executing at any given time.

In summary, the analytic models should be used to study

the effect of varying system parameters over a wide range,

while simulation models should be used for more accurate

The number of states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53
analysis of a specific configuration.

In this chapter the necessary background in analytic and

simulation technique are considered. These basic concepts

will provide a clearer understanding of the chapters that

follow.

4.2 QDEUEING PRINCIPLES

After the mathematical model of a queueing system has

been formulated (by specifying all its assumptions), the

model may be studied analytically in order to better

understand the behavior of the system. Under certain

conditions, a queueing system that has been in operation for

a sufficiently long time settles down to a behavior

independent of time. The system is then said to be in an

equilibrium (steady state) condition. At the steady state,

the following holds:

Jobs into the queue = Jobs out of the queue

The steady state is more convienent for system analysis.

The shorthand notation (A/B/C):(D/E/F) is used to

describe any general queueing system, where A,B,C,D,E,and F

are defined as follows:

A represents the statistical characteristics of the
customers arrival rate

B represents the statistical characteristics of the
server's service time

C is the number of the servers in the system, 1 ̂ C ^ «
D is the service discipline
E is the restriction (if any) on the maximum capacity of

the system (in queue + in service)
F is the size of the population from which the customers

are drawn, typically finite or infinite.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

A typical notation would be (M / M / 1) : (FIFO/ao/») where M

designates that the distribution is Poisson type. Throughout

the analysis, the above notation will frequently be used.

4.2.1 Baaio Relationships
T he basic queueing parameters that will be used are

summarized in Figure 15 below. The performance measures

such as throughput, utilization as a function of the number

of processing units, and the expected number in the system

will be considered. The following relationships are

d e f i n e d :

Mean service time per job = E [x] sec/job 4-1

then, Mean service rate = 1 / E [.x] jobs/sec 4-2

If the U (utilization) is defined as the fraction of time

the resource is busy, the throughput must be equal to the

service rate of the resource, when it is busy, times the

fraction of time it is busy, i.e.,

Throughput = T = U .(1/ E [xl) where 0 < U < 1 4-3

Thus, for a given service rate, the higher the utilization,

the higher the throughput will be. It is clear that for a

utilization of 100? the throughput equals to the service

rate, i . e . , 1/ E [x].

Furthermore, if there are k identical units of the same

resource each with a utilization U, then the total

throughput is given as

Throughput = k .U / E [x] jobs/sec 4-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

Nsys . —
Number in system
Nq

Number in qi e

Arrival rate

N o.of servers

U > T) ™V. J Service fate

JSL.
Time in quei}e

Tw

l̂ Ns -
INo? ? i
servic

sysiem8 time in °-ueueinS

Figure 15: Some Random Variables Used in the Queueing
System

The mean queue length and the queueing time are defined as

f o l l o w s :
CP

Nq = L = E [l] s J I l P U) 4-5
2.-1

where P(l) is the probability that the queue has Jt job,

and the mean queueing time is defined as
1 0Tq = E [q] = - r - J Z *?(*> 4-6
A =0

The mean queue length (Nq) and time Tq are related by the

well-known formula known as Littles' Rule, i.e., Nq = \ Tq,

and it is proven in most queueing systems textbooks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

4.2.2 Markov Process

In most queueing models made for computer systems

analysis, the Markov process concept plays a predominant

role. The customer arrival at a past or future instant does

not affect the arrival or non-arrival at the present time.

This lack of dependence on the past (and future) is commonly

called the Markovian, or memoryless, property. That is, each

event is acting independently.

A more formal definition of the Markov process is the

following: A set of random variables [Xn 1 forms a Markov

chain if the probability that the next value (state) is x

depends only upon the current value (state) x and not upon

any previous values. That is, the entire past history,

which affects the future of the process, is completely

summarized in the current state of the process.

Analytically, the Markov process is expressed as

The arrival time and service time distribution used in

this study are the Poisson and the exponential distribution,

mathematically than other arrival distributions.

The state transition concept used in developing the

models is defined by the following formula:

lAVtn+r n+1 V n
tl<t2 ' <Cn+l 4-7

respectively. The Poisson arrival is simpler to treat

?1j=P(Xi=j | xo=i) = P(x2=j 1^=1) = P(x3=j |*2=i) " • 4-8
Or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

It denotes the probability that a move is made from state E ^

to state E^. P ^ is called a transition probability. If M

is a Markov chain with n states, the transition matrix will

be an nxn matrix. If each entry in the transition matrix is

a non-negative, and the sum of each row adds up to 1, then

the transition matrix is also called a stochastic matrix.

Thus, every transition matrix is a stochastic matrix. The

converse, however, is not true.

4.2.3 Networks of Queues
When a queueing system can be composed of several

interconnected nodes, and each node constitutes a complete

queueing system (i.e., it has its own queue and server),

then the overall system is referred to as a network of

queues. Burke's theorem [BURK56] plays an important role in

analyzing the network of queues. Burke's theorem states

that in a stable queueing system, a Poisson process driving

an exponential server generates a Poisson process for the

departure. In other words, if the arrival distribution for

the first node is Poisson, then the arrival distribution for

the successor node will also be a Poisson. Another

important fact that Burke's theorem states is the following:

the steady-state output of a stable (M/M/m) queue with input

parameter X. and output parameter u for each of the m

channels is in fact a Poisson process at the same rate as

These amazing concepts associated with Burke's theorem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

will help us to a great extent when analyzing the data flow

model of chapter VII.

Sometimes it is necessary to work with networks of

several nodes where each node is an (M/M/m) system. The ith

node, then, consists of m; exponential servers each with

parameter . Upon service completion in the ith node, the

customer then proceeds to the jth node with a probability

P^j. The total arrival to node j is given by
N

= y. + y ~ ' \ . P.. for j=l,2,...,N
3 3 13

where is the outside arrival rate. Note that some 's

may be zero; this is true if node i does not feed its output

to node j.

Jackson [JACK57 1 analyzed this situation and he showed

that each node in the system behaves independently and can

be considered an (M/K/ra) system with Poisson input X ,even

though the total input is not a Poisson process. Therefore,

in an N-node system, the state variables consist of the

vector (k 1 ,k 2 ,...,k N) where k ^ is the number of customers in

the ith node including the one in service. Applying

J a c k s o n ’s theorem, the state variable vector is written as

P (k 1 , k 2 , ...,kN) = P1(k1)P2(k2)...PN(kN) 4-9

where Pi(ki) is the the solution to the classical (M/M/m)

system and is given by

Pk = Po (mp)/k! k<m 4-10

and Pk = Po (p)m/m! k>m 4-11

Again in chapter VII, these concepts will help in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

treating the different subsystems as nodes in a network of

q u e u e s .

4.3 SIMULATION PRINCIPLES
One of the most costly analysis techniques is simulation.

Given a specific model, running a simulation program will

always cost more than running its analytic counterpart.

Because of the limitation of queueing models, simulation can

be used in conjunction. Simulation models can accurately

model more complex structures than the queueing models can.

The flexibility associated with simulation provides them

this property.

In this study, the simulation language GPSS (General

Purpose Simulation System) is used to simulate the models

under investigation. This language is quite suitable for

simulating queueing problems. Furthermore, it has some

advantages over the other high level languages such as

Fortran and Pascal in queue management and is more compact.

It has a built-in random number generator (R.N.G.). This

R.N.G. can be controlled so that the different runs made for

the different system parameters in each case are done with

the same initial random number, thus controlling the

simulation environment.

In all the models under study, the basic simulation

blocks are similar. The flowchart shown in Figure 16

represents the basic simulation blocks. Except for some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

specific situations where some modification has to be made,

the skeleton of Figure 16 will be typical.

System initialization is necessary, especially if we are

using memory places to be accessed by all the transactions.

As mentioned earlier, initialization of R.N.G. is sometimes

very desirable. The initialization is done for more

accurate analysis and comparison of specific configuration.

In the GENERATE arrival block we control the desired

frequency of arrivals, their type (uniformally or

Poisson-distributed), the starting of arrivals, ... etc.

Note that the first operand of the generate block is the

average interarrival time (IAT). Therefore, if the

interarrival function used is exponentially distributed, the

arrival process is in fact Poisson. The terms transaction

(xact), job, process, and macroinstruction will be used

interchangeably to represent the customer in the system.

With each xact, a number of parameters are associated. Each

parameter can be used to indicate a particular function.

For example, one parameter can be used as a counter to count

the number of operands, and another parameter can have the

destination address for the result (for the data flow case).

The real advantages of the parameters are appreciated when

using indirect addressing. As the xact flow down the model

different service times (for controller, PE, etc) and the

different queues are all computed and stored in the system

memory for print-out. By the TERMINATE block we mean

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ore
Run

End

Terminate
the Transc

Start the
R u n .

Reinitiate
the desired
Parampfprg

Generate
Arrivals

System I n i t .
and F u n c . Def

Assign the Necessary Parameters
Service the Transaction
Manipulate the Different Q ’s.
Compute the Desired Results.
Loop if Necessary.

Figure 16: The Basic Flowchart for Simulating a Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

terminating that particular xact when it passes through this
block. The START block initiates the run. Finally, the END
block will terminate the program unless other runs are
necessary for different configurations. For more
information on the GPSS blocks used, the following
references are recommended: [SCHR?^], and [BOBI76].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter V
THE CONTROLLED MULTISERVER MODEL

5.1 INTRODUCTION
The controlled multiserver model represents an

organization of processing units in such fashion that there
is at least one PE for each operation code. Therefore, ir
executing a certain program where the operations addition,
subtraction, multiplication, and division are extensively
used, one or more PE could be allocated for each operation
code. This will increase the reliability of the system.

5.2 SYSTEM ORGANIZATION
The overall system organization can be envisioned as two

parts communicating via a communication network in a
master/slave environment. The master processing element
(MPE) is located in one part, and the slave processing
elements (SPE's) in the other. Figure 17 illustrates the
principal blocks for the model. According to the notation
used in chapter II, this system could be called an SIMSD
(single instruction stream multiple single data stream)
system.

- 63 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

SPE

Main
Mem.

SPE

Insc
Anal'

MPE

Cont.
CPE

Figure 17: The System Block Diagram

The MPE can be considered as consisting of two parts, the
processing elements and the controller. The
microinstructions are stored in the control store of the
controller. The macroinstructions (program code) are stored
in the main memory, which is also part of the controller
section. The PE is responsible for fetching
macroinstrucions from the main memory and routing them to
the controllers instruction register. The op code portion
of the instruction is used to address the microinstructions.
The microinstruction should contain some control bits to
direct the instruction analyzer (IA). Then depending upon
the type of the instruction, the IA will enable the
specified SPE. If the instruction is of the control type,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

such as jump, subroutine call, etc., then the PS of the MPE
is enabled. A more detailed organization of the system is
shown in Figure 18.

5.3 SYSTEM ANALYSIS

The performance of this model is analyzed using queueing
techniques and simulation methods. We will discuss the
queueing model for this organization first; the state
transition concept will be used to derive the analytic
equations for the system. Once established, the state
equations are used to calculate the different performance
measures. The second technique used in this analysis is
simulation using GPSS. Due to the flexibility associated
with simulation techniques, some modifications will be
performed in order to observe the effect on performance.
Basically, we are interested in adding a load unit to each
PE in order to store its microinstruction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

Tnstr.
Reg.

Mapper

Sequencer

Main control
sore and
pipeline reg.

I

Instr. Anal.

n+1-'

m.
u:..

'2

MPE

out
Queue

PD
IR in

PEI ?&! P o s i n g Section pj,n

Proce­
ssing
Elemen
fn/fl

IE DB

PE

fn//2
CE DB

JZSTf-Ll.
| Buffer~j

Data bus
Address Bus

PE

fn//n
IE D!

(g p l

MR
Main

Memory IR from
queue

I/O

cr>„ o>Figure 18: A D e t ailed S y s t e m O r g a n i z a t i o n

www.manaraa.com

67
5.3.1 The Analytic Model

The basic queueing structure is shown in Figure 19.

Contrl.Queue lenght

u 2
Arrival'

MPE

I/O

SPE 1

SPE 2

SPEn

Figure 19: The Overall Queueing Structure

Clearly, it is not an easy task to analyze the model of
Figure 19. Due to the complexity of this queueing model, we
need to make certain assumptions. These assumptions will
serve in easing analysis of the system without getting down
to the fine details. As is generally true in queueing
models, simple models of a particular system will not give
erroneous results in comparison with more complex models for
the same system [CHAN81 1. The following facts are true for
this system:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

68
1. One job is executed at a time, i.e., where the master

PE is busy serving a job, then this job will have the
priority of getting the attention of all the
processors (nonpreemptive).

2. The service time of the slave processors are measured
and the overall average execution time is found to be

where ui is the service time for each of the slave
processors, and n is the total number of PE's (this
value will be used in the simulation case).

3. According to the analysis, only one SPE is enabled at
a time. The slave processor will only perform one
function, and while the SPE is performing that
particular ALO function, the controller can not deal
with the next macroinstruction.

Due to the overlapping between the operations of the SPE's,
then each SPE sould have its own status, shift, and carry
control unit, (AM2904). This is the modified PE of chapter
III.

The following assumptions are made for the queueing model
so that the analysis can be carried out with less hardship.
First the I/O device can be neglected, because the
probability of executing an I/O instruction is always lower
than the probability of executing any other instructions.
Therefore, the error due to this will be negligible. The
second assumption made is the possibility of combining the

n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69
service time of the controller with that of the SPE. This
later assumption is justified by the following fact: In
order for each SPE service time to occur, the service time
of the controller (u£) must occur. Therefore, (ui+uc)
(where u stands for the service time for SPEi) is
implemented. The model after these simplification will
reduce to the one shown in Figure 20. The probabilities pi
through p and pn q-

Queue

u +u

SPE 1

IPE n

MPE

SPE 2

Figure 20: The Simplified System Model

can be estimated by using a typical program that uses all or
most of the functions (that is the SPE's).

This system (for the moment) can not be considered a
truly parallel system, for not all the SPE's can be occupied

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

at the same time. More precisely, as long as the MPE's
controller is busy serving one SPE, then other SPE's can not
serve the waiting insructions. This later fact
differentiates this system from a normal multiple server
system, and can be considered a restricted (M/M/n):(FCFS/c/«)
model. When using simulation we will remove this last
restriction and compare the results.

5.3.1.1 State diagram derivation
Initially the system will be empty, i.e., at state 0. As

the first microinstruction arrives, depending upon the type
of operation, Add, Sub, etc., a particular SPE will be
selected. If for example the operation is an add, and the
probability is P2» then the next state in the state diagram
is ^2) . The notation is interpreted as follows: f
instructions are in the system and SPE-g is busy executing
it. While in staten,2) and another instruction arrives, the
next state will be /2,2\ , i.e., 2 instructions are in the
system, and the one being served is using SPE-2. Now
suppose a service completion occurs while the system is in
state then we will go to state 0 where i=1,2 ,...,n.
Depending upon the probability (p1, p 2> • • •»Pn-) fche next state
will be decided, e.g., if the probaility is p3, then the
next state is 0 as shown below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

u2p1

u2pn

The complete state diagram is presented in Figure 21.

5.3.1.2 Derivation of the state equations
We will derive the equations for the general case.

Afterwords, some numerical examples will be used to
illustrate the results. Let n be the number of PE's; and c
be the capacity of the system. The rate balance techniques
[fCLEI75al as pointed out in chapter IV, states that the flow
rate into a node must equal the flow rate out of the node.
This principle is applied to each node in the state
transition diagram.
For state Po:

P0 X • PU V P12 V - • -+Pln “a 5-°
and for states P11 ,P 12,...,P1n we have:

P„ ' V P21 “ lpl+ P22 " 2P1+- • -+ P2n " nPl ' PU < * + " 1> 5"'

Po 1P2+ P21 » 1P2+ P22 “ 2P2+ * ’'+ P2„ " »P2 ' P12 < ‘ * “ 2>
5-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu
re

2i
:

St
at
e

Tr
an
si
ti
on

Di
ag
ra
m

for

th
e

Co
nt

ro
ll

ed

Mu
lt

is
er

ve
r

Sy
st

em

www.manaraa.com

73

V P»+P21 " l V P22 V,*' • *+P2nu npn ° V X + V 5'3
rearanging equations 5-1, 5-2, and 5-5 ,

P2l“lpl+ ?22Vl"" • '+P2„Vl ‘ PU < 1 + V ' V P1 5'"
P2 l W P22V2+- +P2n“nP2 ‘ P12 < X + P2>-PoX P2 5'5

P2l“l>V P22W-+?2nV« ’ Pln < * + V'V Pn 5-6
For states P21 ,P22 »***»P2n we 'iave

1 P11+P31P1P1+ P32U2P1+---+ P3,»-lVlPl+ P3tVl " P21 <U 1+X) 5-7

X ?12+P3lVl+ P32"2P2+-' -+ P3,n-lVlP2+ V . . P2 " P22 ^ 2+X > 5-8

1 P1 ,n-l+P31*1lPn-l+P32P2pn-l+'' '+P3,n-1 V l Pn-l+P3a''npa-l ' 5"?
P2,n-l(V l +X >

X V * 3 l V „ +V 2 pa+- ‘ V V * > 5-10
Similarly, we can derive the equations for P ... P, up to31 3n
P ci ••• Pcn using the same procedure.
Generally, it is possible to write the above set in a more
compact form,

P1J(U3+X) ' V pj +pj j x P2i“i 5'"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

where j=1,2,... ,n ,
n

Pkj (X + V = ?k-l.jX + Pj ̂ Pk+l,i Wi 5”12
where k = 2,3,-..»c-1 and j = 1,2,...,n
and,

P., - (X / uj P._, . 5-13'-j j '-j-> J
The above general set of equations can be used to find
any state probability. It is evident that the set is a
recursive one. Due to the symmetry in the state
diagram, one is encouraged to take advantage of matrix
algebra. Consequently, by converting the above into
matrices and rearranging we get:

Vi • • • V i 'P2l‘ rx+yn 0 . . . O' Pll 'P1
P1P2 V2P2 • * * V z P22 D A+yn . 0

P12 P2

, • • -APc •

. V n V n • * * Vn. .V 0 0 A+yn •pm Pn.

' V l y2pi • • ' V l Pl nPl ‘ P31 y^+A 0 . . . 0 P21 ‘Pll ‘

P1P2 U2P2 * * ' V l P2 nP2 P32 0 yj+A . . . 0 P22 P12

• - -A I c
V - ■f2Pn-l V l pn-1PnPn-l P3n V i +X P2n- Pln-1

0

.Vn V n - • • Pn-lPn V n . P3n . • ■ • v x P2n Pln .

For convienence, let us make the following assignments,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

Let A

Vl P2P1
V1P2 U2P2

PlPn >*2Pn

% P1
^ P2

u Pn

an nxn matrix

uL+x 0
0 U2+*

0
0 an nxn matrix

0 0 Un+ X

and

L =

X
0

0
X

-‘I1]

where [I 1 is an nxn identity matrix. Furthermore, at this
point it i3 also necessary to define the 0 and P vectors.
The U-vector (UV) is the service rate vector and is given
as:

UV = I M2 . . . U n 1 T

whereas the P-vector (PV) is the probability selection vector

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and is given as:
PV: I P1 p2 . . . PnlT

The A. matrix is then found by multiplying two matrices,
where the first is formed by the elements of the P vector
(PV) and the second is diagonal and is formed with the
elements of the UV.

'P1 P1 ' ' • P1 ' \ 0 . . . o '

A=
p2 p2 ; • • P2

X
0 U2 . . . 0

.Pn Pn * •• •' Pn . 0 o .
■ • V

matrix is formed as follows:

Oor<L. y 0 . . . 0
o x • • • o 0 w . • . 0

• •
••

X «

O O >- a _
_ 0 0 u• tl.

where the diagonal matrix X is of size nxn. For the rest of
the states, up to P i=1,...,n the set of equations willc-1 f i
look like Eq 5-15. And finally, for states Pci i=1,...,n

* - •

"lPcl XP . 1 c-1,1
U2Pc2 »

XP . , c-1,2

u’p XP .n cn . c”l»n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

or

V 'U1 0 . . . 0
- 1

V i . i

o to

0 U2 . . . 0 Pc-1,2

• - X
t

• •

«■ c3 - 0 0
V Pc-1,2

Returning to 5-14 and 5-15,. and solving for the state
probabilities P^'s , we obtain the following general
results:

11
'12

In

21

22

L 2n J

= [B] « A]

[B] < A]

21

' 22

'2n

31

32

3n

+ P X o

+ [L]

P , / / pc-1,1 cl
P , o pc-1,2 -1 c2
• - [B] C :a i

P . Pc-l,n . c,n

+ [L]

1
HP-.

V

CM

•

.Pn. /

>

12

In

>

c-2,1
P 9 9c-2,2

LPc-2,n

>

\

5-17

5-18

5-19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

-1
Pcl

Pc2
•
•
•
P

. cn

* X

*1 °
0 Po

0 0

0
0

c-1,1
?c-l,2

c-l,n

5-20

where the matricesfA] , [B], and [L] are defined as above.

Now, the set of equations 5-17 through 5-20 can be solved

recursively. In Appendix A we will show the solution for

the case n=3 and c=3- The dimensions of the above matrices

and vectors depend only upon n, whereas c, the system

capacity, has no effect. The role that c plays is the

quantity of the P vector, i.e., we will have c P-vectors

each of dimension nx1. Note that even after the solution

for rP P . . . PlT is found, equation 5-0 can not be used 1 11 12 Id
to compute Po, since one equation of the set is always

redundant. Instead, we could use the normalizing relation:

f*. = 1 5-21
i=0 j=0

By inspection we see that it is not possible to have the

following states:

since P. = 0 for i=1,. . .,c io

and Poj= 0 for j=1,

(i.e., i xact's are in the system

and none of the SPE's are busy.)

(i.e., the probability of the

system being empty with a proce­

ssor busy.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

79

and finally Poo = Po
Then equation 5-21 reduces to

c n
P + 2 2 P., =1 5-22
0 i-i j-i11

where 2 2 P..are in fact the column vectors we solved for
i j 1J

earlier, and are in terms of Po

Pn = 1 / (1 + 2 2 P!.) 5-23
i=l j=l

where P^ = py , The utilization is found
C tl

as

psys = < 2 5 p;,)x ioo 5 ' 21tsys i=l j-1 *1
where Pij = Po Pij.The utilization of each SPE is also
found:

PkpE = (Plk + P2k + P3k + . . . + Pck) x 100
<1 P± k) x iooi=l

for k= 1,2 , ... , n
In general, the expected number in the system is defined

as n
Nsys = L = 2 nPn

n=l

where Pn is the probability of the system being in state n;
and Nsys signifies both the transactions waiting and in
service. In our case the expected number in the system is
not as obvious as in the above for the probability also
depends on the type of service. Consequently, the expected
number in the system is defined as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

Nsys " lxt P11 +P12 + ’ ' ‘ +Pln]+ 2x[P21 +P22 + * ' * +P2n1+
+.•.+ cx[P . +P „ +. . . +P] cl c2 cn

5-26

In a more compact form Nsys is given as
5-27

Nsys ’ |=i I n '̂ k Pnil
where n is the number of PE’s and c is the system capacity.
The throughput (T) is found,

T = p . (SUV / n) Instruction/unit time 5-28sys

and the throughput for each SPE is also found by,

TSPE = (p kPE) ' (uv [k]) 5-29

Ic — 1,2,• • • ,n
The mean queue length is given as

» , • E I L q > ■ 0 [P n + P 1 2 - > - . . . t P l « l « I f 2 1 + P 2 2 + - « 2 n l + - - - +

», -t. ^ 5-3°q i=2 j=l 3
The average instruction response time, Tw is equal to Nsys/) a
where N = N + N sys q s
and \.g = the actual arrival rate

■ X t 1 - | > c j] 5- 31
n

where • is the probability that the system is not full.
j - 1 11

The average number in service., Ns, is equal to n.E and

■ (Z ± P lk.)/n
V I i=l ' '

S[P sPEl = p k PE=I A ^ PikJ/n 5-32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

From Eq 5-30 and Eq 5-33, N is found,

*sys = (z : (i-D iz Py) + e 12 piky i=2 j=l 13 k=l i=l 1K

let k=j
N

c n n csys 22 +E E p±jsys i=2 j=l 13 3=1 1=1 13

= E p, o +y~>. r. ((i-i) p.. + p..)
i-l U f e n 13 13
n c n

- r ♦ s n i.»y1Jt 1=2 j=l 1J

c nNays = E E 1* Pij 5-3̂1=1 j-l
Equation 5 - 3 confirms our result obtained in Eq 5-27.

Consequently, the average response time is found,

TW =(E 22.) / M l -22 pci] 5-35i=l j-l 13 j-l C3
and the average time in the queue, Tq is computed as,

Tq = N / X = [22 (1-1) E PiJ / M l -22 M 1 5-36q a i=2 3-1 13 3-1 03

5.3.1.3 Solution of the analytic technique
The previously derived state equations require a few

matrix multiplications and inversions. For example,
equations 5-17 through 5-20 must be solved recursively,
starting with the last equation 5-20 and working up toward
5-17. When the vector [P 1 fi is found it will provide theli
results in terms of Po. Again, working down toward equation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

5-20, the vectors [P2-̂1 through [P cil are found, and all are
in terms of Po. In Appendix A we illustrate the above
discussion with the solution of a numerical example. APL is
used to solve the system for higher orders. This language
provides great flexibility when working with matrices. The
interactive nature of this language has encouraged us even
more. The algorithm used follows exactly the procedure
above. The program listing is given in the Appendix B.

5.3.2 The Simulation Model
The simulation model analysis is a good supplement to the

analytic model. The statistics collected in a simulation
run should somewhat agree (or follow the same direction)
with those obtained in the analytic case. Simulation models
In general are used to observe more specific system behavior
to variation of certain system parameters. The language
GPSS is used for the model simulation. With simulation,
however, we can relax some assumptions that are made in the
analytic case. For instance, the composite service time of
PE and of the control unit (used in the analytic case) can
be separated without much complexity. The later attribute,
will provide us the capability of measuring the CU
statistics independently of the PE's. As it was pointed out
earlier, the price for this great flexibility is paid for by
the computation time necessary to run the simulation
program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

83

Two different model combinations will be studied with the

corresponds to the analytic case. Then, the CU and PE

service times are treated separately, for the SPE's, and the

each SPE will have its own micro-register in order to store

the current microinstruction. In the second run two sets of

statistics are generated, one for the CU and another for the

SPE's.

The corresponding analytic model for the second case is

very complex and finding the analytic equations is extremely

tedious. We will not derive the mathematical equations, but

instead will set up the model. However, by applying the

same technique implemented earlier, the state transition

diagram is produced, and is shown in Figure 22 for n=3 and

system capacity of c. As can be observed the level of

complexity increases even more for a slightly higher n. In

order to provide a feeling for this complexity, the

sub-state transition diagram is presented in Figure 23 for

the case n=5,

simulation. First, we will run the same program that

necessary modification for the SPE’s are made. That is,

where n<k<c and number of states in Figure 23

this is true for every n<k<c

The total number of states= l+(l+N)+(l+2N) + ____+(1+(N-1)N)

c>n
and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2
.1

0

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu
re

22
:

Th
e

St
at
e

Tr
an
si
ti
on

Di
ag
ra
m

for

the

Se
co
nd

Ca
se

www.manaraa.com

85

Figure 23: Sub-State Transition Diagram for n

The set of notations in Figure 22 is read as follows
abc,i jk

a: the number of instructions in the system
b: 0 free] CO

1 busy]
c: number in service,(i.e. number of activ SPE), c
i: 0 free' SPE 1

1 busy
j: 0 free1 SPE2

2 busy
k: 0 free1 SPE3

3 busy

level 0

level 1

level 2

level

level n

5

is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LU

www.manaraa.com

86

The assumptions made for this model are as follows:

1. The CU cannot remain idle while an instruction is in

the queue, i.e., the n,0,m (for m<n) states are

not defined.

2. Only one instruction at a time is serviced by the CU.

When all SPE's are busy, and uc service completion occurs,

the instruction will remain in that state untill a u.x
(is 1,... ,n) occurs.

In simulation, the interarrival and interdeparture times,

instead of the arrival and service rate, are used. That is,

in the analytic case X. and are U3ed for the average

arrival and departure rate, where in simulation 1/X and 1 /fi
are used. These later modifications are due to the language

requirements. The simulation flow chart for the controlled

raultiserver model is presented in Figure 24. The simulation

program is given in Appendix C.

5.4 ANALYSIS OF RESULTS

Two different analyses are performed for the controlled

multiserver model. The first analysis includes both

analytic and simulation models, whereas the second analysis

covers only the simulation model. In the first analysis the

assumptions made for the analytic case will also hold for

the simulation case, essentially, the CU and one SPE can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

Start

CU Busy

Activate
Job

Job arrival
(a limited
number')___

Assign the
no.of Inst

Terminate

Wait

Macro-inst
arrival

Select the
PE number

Assign the
PE and CU
service time?

Enter queu

>
Seize
CU

the

Execute.
Cnst-flnst-l C o n t ,

Obtain stat. Release CU.

Terminate

Figure 24: The Simulation Flowchart for the Controlled
Multiserver Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

88

busy at any given time. The active SPE is selected

according to the probability selection vector PV, as

indicated earlier. The analytic model is valid for n > 3 ,

where n is equal to the number of SPE's in the system.

Figure 25 shows the average utilization (for the system

and for the PE's) versus system capacity for different

combinations of\J/(trafic intensity). Note, however, that

the number of SPE's in this analysis will not be critical

for only the CO and one SPE are active at any given instant.

The average service time is found by 1 / (u +USPE) • For

higher vj/ the utilization will also be higher; this is

evident since the system remains idle fewer times for higher

Figure 26 illustrates the throughput as a function of

the system capacity. The utilization obtained via the

simulation method is 11$ higher than the one obtained by the
analytic method. As vj/approaches unity, the gap between the

analytic and simulation result decreases, as shown in Figure

25. Tables 1 and 2 show the utilization of individual SPE's

for the case

PV = [0 0 0.04 0.05 0.06 0.1 0.15 0.15 0.2 0.25]

Different selection probabilities can be implemented and

studied if desired. Figure 27 represents the utilization of

the SPE and the system utilization for the equal probability

selection vector, i.e.,

PV = [.1 .1 .1 .1 .1 .1 .1 .1 .1 .1]

For higher number of SPE's, the utilization, hence the

throughput of each SPE will decrease, as expected.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

\C

00

9 <

uasacou
£<UU
CO
CO

00
o

vO >g*
• •C Cuo-p̂BZ-pxT̂n

<N
o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

25
:

Th
e

Ut
il

iz
at

io
n

Ve
rs

us

th
e

Sy
st

em

Ca
pa

ci
ty

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

a v|/ =

ovjy =
10

rH

U3a

oi-i.eEH

S i m u l .

n a l y .

S l m u l .3

A n a l y .

2

12 16 204 80
c (system capacity)

\oo
Figure 26: The T h r o u g h p u t Versus the S y stem Capacity

www.manaraa.com

91

TABLE 1

The Utilization of Individual SPE’s (v|/=0 . 6 1 6)

PV = [0 0 0 . 0 4 0 . 0 5 0 . 0 6 0 . 1 0 0 . 1 5 0 . 1 5 0 . 2 0 . 2 5]

Simulation Analytic

c=5 c*10 c=15 c=20 c=5 o II O c=15 c=20
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 5.7 4.6 1.2 2.9 3.82 3.98 3.99 4.0
4 3.5 4.3 2.9 1.7 4.7 4.97 4.99 5.0
5 3.1 5.0 9.7 4.1 5.72 5.96 5.99 5.99
6 10.1 7.3 7.0 8.1 9.54 9.946 9.99 9.99
7 15.1 16.1 16.8 13.3 14.3 14.9 14.99 15.0
8 13.4 20.8 12.9 17.7 14.3 14.9 14.99 15.0
9 22.7 12.3 17.9 23.3 19.07 19.98 19.99 20.0
10 26.1 28.7 30.5 28.0 24.0 24.87 24.98 24.999

I 99.7 99.1 98.9 99.1 95.4 99.46 99.93 99.99

The second case is analyzed by simulation only. As is

shown in section 6.3.2, for such a case the analytic

technique becomes very complex. In this analysis, we

provide a buffer unit for each SPE, so that it will store

its current microinstruction, thus freeing the control unit

for other SPE. The current microinstruction will be loaded

to the next SPE provided it is idle. The system can even

become more efficient (as well as more complex) by providing

each SPE with its own queue. This last modification is

beyond the scope of this dissertation, and will not be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92
TABLE 2

The Utilization of Individual SPE's (vj/=1.5152)

PV = [0 0 0.04 0.05 0.06 0.10 0.15 0.15 0.2 0.251
Simulation Analytic

c=5 c=10 c=15 c=20 c=5 o 11 O c=15 o II o

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 3.1 1.4 0.9 0.9 2.54 2.65 2.70 2.66
4 3.1 2.0 1.4 1.4 3.17 3.314 3.33 3.33
5 2.0 3.7 2.7 2.7 3.81 3.977 3.997 4.0
6 9.8 8.5 10.4 10.4 6.35 6.63 6.662 6.78
7 11.2 8.5 8.6 8.6 9.52 9.94 9.992 9.99
8 10.3 10.1 9.7 9.7 9.52 9.94 9.992 9.99
9 12.2 18.7 20.2 20.2 12.69 13.26 13.32 13.43
10 16.0 18.4 20.0 20.0 15.86 16.57 16.65 16.66

2 67.7 71.3 73.9 73.9 63.46 66.28 66.62 66.66

TABLE 3

The Total Throughput of the SPE's

PV =t 0 0 0.04 0.05 0.06 0.1 0.15 0.15 0.2 0.25 1
Simulation Analytic
1.51.52 “ '

c=5 c=10 c=15 O II ro o c=5 oIIO c=15 c=20
2 0.00299 0.00297 0.00297 0.00297 0.00286 0.00298 0.00300 0.00300

v)/* 0.616
2 0.00406 0.00430 0.00440 0.00440 0.00380 0.00398 0.00399 0.00400

discussed here.

An improvement is achieved in the utilization of each

SPE, as illustrated by Figure 28. As the number of SPE's

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

•H

•H
4J

N CL•H

H 3 < U < ;) w

•H

•H

O 00

wA-

0).a63Z

S U 0X } B 2 JXT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu
re

27
:

Th
e

Ut
il
iz
at
io
n

as
a

Fu
nc
ti
on

of

www.manaraa.com

(n) increases, the SPE utilization remains somewhat
unchanged, or varies very slightly. Comparing the graphs of
Figure 28 with those of Figure 27, the improvement is
evident. For example, when n=10, the improvement is between
300? to 400% higher than that of the first case. The total
system throughput is also given by the graphs of Figure 29.
The average queue length remains practically uniform for
each system capacity. Figure 30 illustrates the average
queue length for c=10 and 30, as a function of n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

•H

C = 11

c= 30

25

2520 3010 15
n (Number of PE's)

<r>uiFigure 28: The SPE Utilization as a Function of n

www.manaraa.com

96

cn w

CM

O
cn

m

m

o o m
*£> <r co h

0001 x ^ndqSnoaxix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

29
:

Sy
st

em

Th
ro

ug
hp

ut

as
a

Fu
nc

ti
on

of

www.manaraa.com

97

in

CO

o oo o
c CO ,, egqtjfcuai anano aSeiaAV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

30
:

Th
e

Av
er

ag
e

Qu
eu

e
Le

ng
th

as

a
Fu

nc
ti

on

of

www.manaraa.com

Chapter VI
A PROGRAMMABLE ARRAY MODEL

6.1 INTRODPCTIOM
In array processing systems, a number of identical

processors are used. The manner in which these processing

el e m e n t s . (PE's) are connected differ from one system to

another. Some important array models are presented in

chapter II. As an example of an array system, we propose

the array model discussed within this chapter. The need for

array processing architecture arises in environments where

speed and throughput are of great importance to the extent

that cost will not be very critical. Array processors are

highly specialized systems. An example of an array system

that uses bit-slice elements i3 the Purdue multiprocessor

(PM 4) system, [BRIG79],and [BRIG82] .

- 98 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

6.2 SYSTEM ORGANIZATION
The system can be configured to consist of two principle

blocks:
1. The control block section.
2. The processing block section.

The control block consists of a complete bit-slice machine,
i.e., a control unit and a processing element. A number of
identical processing elements constitute the processing
block. Figure 31 illustrates the organization of these two
blocks.

Instruction

n

Stream
t

Control

^ 17
PE Control Stor<

Main
Mem.

The pro­
cessing
Block

-J

The Control
Block

T

N<
Comm.
etwo-
IcL

PE n PE 2 PE 1

1 t • • • t 1 *>
L.M. L.M. Local

Mem.

Data Stream

Figure 31: A Block Diagram of the System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100
The control section contains the control store which serves
as the main supplier of microinstructions to the processing
elements PE-1 through PE-n, and to the PE of the control
section. The intercommunication between the two sections is
controlled by the microcode. We will explain this
organization in more detail in the latter sections.

6.3 HARDWARE ARCHITECTURE
As it was pointed out in the last section, the NMSU-MBSE

system consists of two sections, namely, the control unit
and the processing elements. We now go through some more
detail to explain how the hardware modules are configured
and how the interconnections between the different modules
are performed.

6.3*1 Processing Elements (PE’s)
The modified ALU slice developed in chapter III (Figure

13), will be used in this array organization. Since the
control unit will be used to serve a number of PE's, and
furthermore, since each PE has its own data stream to work
on, then each PE will require its own status, shift, and
carry control unit. Thus it is necessary to use a separate
AM2904 for each PE.

The modular concept could also be applied here, since
more than one board for each PE can be used (e.g., a 16—bit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101
PE). Thus, some means of communication and shift
justification must be made. The multiplexers 1,2, and 3 in
Figure 13 are implemented for this purpose. As a result, the
overall system is left unchanged with regard to the
modularity. A variable length PE can easily be implemented.
This latter feature provides an adaptable array system that
can be used in applications where the word length is quite
long, such as in image analysis and pattern recognition
application. A simplified PE block diagram will be used
from here on, and is given in Figure 32. Whenever the
diagram of Figure 32 is used, it should automatically imply
Figure 13.

6.3.2 The Control Section
The control unit controls the activities of the whole

system. It has the necessary microcode to emulate a
specific machine. By the same token, different microcodes
could be implemented to emulate different microprocessor
systems or even new ones.

The microprogram store width will be slightly different
from that of chapter III. Each microinstruction, in
addition, should have a field specified for the
intercommunication purposes. Furthermore, some microbits
should be assigned for the selection of the various PE's.
For an n PE system, we require n+1 bits for this selection.
Since two different sets of microinstructions are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

102

u-code

bata Bus' i
ssc
A m 2904

MDR
A m 2 9]7

SIO
QIO

SIO
QIO

ALU DB
Am 2 9 0 3 1 s

MAR
Am 29 20

Carry
Am2902

Add.
Bus

Figure 32: The Simplified PE Block Diagram

implemented, i.e., one for the CU and one for the PE's, some
means of distinguishing between them is required. The
instructions for the CU are of the control type (that is,
jump, subroutine call, ...), whereas the instructions used
in the PE's section are for data manipulations (i.e., add,
sub, multiply, ...). The micro instructions are shown to
consist of three principle fields:

THE INTERCOMMUNICA­ THE SEQUENCER THE PROCESSING
TION FEILD FEILD ELEMENT FEILD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

Figure 33 illustrates how these fields are arranged.

ALU CONT.

l 2903 2920 2920 2910 2914 2920 2904 2922 2910
\ ALU MDR MAR Branchlnt IR SSC SMux Seq .

(24) (4) (4) (12) (7) (3) (22) (8) (7)
INTER. NETWORK CONT.

Interconnectio Mux. Intercon. Network
2925

Control Clock\
1+log n 2(n-1) (10) (4)

Figure 33: The Microinsruction Fields

A detailed system organization is presented in Figure 34.
There are two means of communications in the system: the
intra-module communication, between the processing elements,
and the intercommunication of the controller with the
processing elements. An interconnection network is used for
the intra-module communication. Figure 35 shows this
interconnection network for the case where the number of
PE's and the number of memory units are equal to four. This
network is essential for the vector operation case discussed
in section 6.5 . Each PE can have access to the memory of
the neighboring PE. The interconnection network is
controlled by the microcode. Each subunit in the network
takes two control bits, one for each direction. The total
number of microcode bits designated for the interconnection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

104
network is equal to Cn — 1) x 2 , where n is the number of
PE’s (also in this case the number of memory units equal to
n, i.e., each PE has its own local memory).

A multiplexer is used to interconnect the PE's to the
controller. Some microcode bits are designated to control
this mux. For an n PE system the following will be true:

1. Number of microcode bits for the Mux select lines

bit is used for the control line.
2. For an n PE and an M bits data bus (M-bit machine),

then the number of multiplexers = M each of n to 1
type.

Figure 36 illustrates a system of 4 PE's and 8-bits data
bus.

As a final note, we compare the two interconnection
networks of Figure 37. In each case the number of PE's and
memory units are equal to 4. In part a, each PE can have a
direct access to any of the memory units. This means of
communication is a costly one. The number of gates required
(G) is found as follows:

Ga = 2n w i
where w is the width of the data bus. The G for part b (the
one implemented above) is found as

Gb = 2(n-1)w ii

equals

for the 3elect and the 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

CONTROL S E Q U E N ­
CER and Central
Control Store

u-code
Buffer

MPE

SeqPE ContOther Misc. Bits

Main Memory

u-code
Buffer

u-code
Buffer

u-code
Buffer

PE-1PE-2PE-n

'Ad dr
Mem-1Mem-2Mem-n *hData

i electoutpu
cont­
rol ,

Data
Bus

PE n
The Interconn-

PE-3
PE-2
■ >

- O
PE n-2
PE n-1

Network
PE nThe Communi- PE 1

cation Mux.

Figure 31*: The Complete System Organization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Output
Control

Select

Data Bus of PE-1

PE-2

PE-3 /

PE-4

To CU From the
PE's

Figure 35: The Interconnection Network

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

107

Output
Control

Select

Data Bus of PE-1

PE-2

PE-4

To CU
From the
PE ’a

Figure 36: The Arrangement of the Data Mux for a 4-PE Array
System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

108

It is clear that the second network is far less expensive
than the first one. For a data bus width of 8-bits, Ga =
256 gates, whereas Gb =48 gates. Furthermore, for bit-slice
applications the second is more convenient to use for it
takes less microcode bits to control. More specifically, in

2,the first case it takes Ga/w = 2n =32 bits, and in the
second it takes Gb/w = 2(n-1) = 6 bits. However, the main
disadvantage with the second is the delay associated with it
when implemented in large networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

PE 1PE 2PE 4

Interconnection
Network

MemlMem2Mem3Mem4

PE 1PE 3PE 4

Interconnection
Network

MemlMem2Mem3Mem4
(b)

Figure 37: The Two Interconnection Networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110
6.4 ANALYSIS OF THE ARRAY MACHINE

The array machine can be viewed analytically, as in
Figure 38. The incoming jobs pass through the queue and
wait until the controller is free. After the required
number of PE’s are available, then they are allocated and
the control unit is employed to that particular job.

1PE

2PEc-1 CU

nPE

PE Resources

Figure 38: The Queueing System

Each job selects a number of PE's equal to X; where X is a

random number ranging between 2 and n, i.e.,
1 < X < n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

111
6.4.1 The Analytic Model

The model of Figure 38 is first analyzed analytically.
In order to analyze this system, we need to derive the state
probabilities. The state transition diagram for this system
is somewhat similar to the one of chapter V except that
all of the PE's have the same service rate since they are
executing the same microinstruction. Figure 39 shows a
reduced state transition diagram for n=3 and system capacity
c. Hwang and Lee, IHWAN79] and [HWAN81], have analyzed an
array system with a multiple control unit for the PM4 system
[BRIG79].

It is very important to notice the dissimilarity between
this model and that of the modular organization presented in
chapter V. In this model the probability vector E PV]
specifies the probability of selecting only a particular
number of PE's ,i.e., allocating 2,3,...»n PE's to the job,
whereas in the other model, [PV] specifies the probability
of selecting only one type of PE, i.e. ADD, SUB, MUL-PE,...
etc, by the instruction. We will not present the details of
obtaining the state probabilities since the method is very
similar to the one done in chapter V. Instead, it suffices
to give the general final form:

P-j(X+u) - p0 xPj +ppjil1P2i 6-0
for j=1 .. . ,n

pkj< A+ p) = Pk-i.j a+wpjS pk+i,i 6-1
i«i

for k=2...,e-1 and Js1,...,n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and finally:

for j=1... ,n
As before,
calculation

113

PCj = (* / u) Pc-l,j 6-2

it is convenient to use matrix forms for the

■11
?12

•In

’21
P22

' 2n

t 9 •
*21 PiT

• [■ r; M
P22 p2

6-3
>

iI P2n
t

V

*31" pii

r i r i P32 r t P12- [B] < m • +[i] • > 6-4

p
-

k

3n . ln.
/

c-1,1
Pc-1,2

c-l,n

s

- C - K C -]

'pc , r
Pc,2

+ M

s.

Pc-2,1
Pc-2,2

>

\
pcn Pc-2,n

> 6-5

cl
Pc2

cn

t L
■y o . . . 0‘ rp ,c-1,1
o u . . . o c-1,2

= \ •

0 0 . . . u P ,L c-l.n.

6-6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11J)

where the matrices A , B , and L are defined as:

A =

UP, UP,
UP, UP,

U UP,

UP3
UP,

11 p.

an nxn matrix

X + u 0 .
0 X + p

0 . . X +]i

an nxn matrix

’ X 0 . . . 0
O X . . . 0

0 0 - • • X

an nxn matrix

All the state probabilities (^ i's) are in term of Po:
^ Pli’s ^ P2i'ŝ * ' ‘ ’ ’tPci's^ 6-7

Then Po is solved for as before
c n

P + y * 7" 1 = 1 6-8
0 i=rt=i ji

c n
po [i + z : > r. Pi;]= i 6-9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

-1
715

6 - 1 0f, - 11 + 2 2 £ pil i ° j-1 i-1 2where Pij = Po P'ij . Therefore, Po is now known and can
be used to find the P'ij.
Then eq. 6-7 becomes:

” p;,i’s U p2 i's1, — 1 O s ” 6 - 1 1

from Eq. 6-11 we can write a P* matrix which consists
of n rows and c columns. In fact, the P1 matrix is the state
probability matrix.

Number\ Number of jobs
of PE's \in the system
a-, located 2 3 h 1a c

P * 21 • ■ ph.i' • p ' c-1,1 pcn
P 122 Ph2 V l 2 Pc2

P *2k Phk ',-11 P ^ck

Po’2n • • Phn * • pc-l,n p ’ / cn '

6-12

>

where 1 ^ h £ c and 1 ^ k ^ n
where Ph,k expresses the probability of the system being in
state h,k i.e. h jobs are in the system and k processors
are allocated to the one being served. In order to find the
probability of PE allocation, the P' matrix is used quite
effectively. For example: y_Pik equals the probability

•Vi's
of k processing elements being allocated in the system.

The state transition matrix is shown to be somewhat
complex. The dimension of the state transition matrix (Q)
is ((nxe)+1) x ((nxe)+1). In equation 6-13, it is shown

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116
that the state transition matrix (crossing out the first row
and column) consists of c square submatrices each with a
dimension of nxn. Even for a small number of PE's, the
number of states will be high and the number of possible
transitions will grow very rapidly. Specifically the number
of states is (nxc)+1 and the number of transitions equal to

Z(3c-2)(n) + 2(n+c) + 1 6-12.a
Ideally, there should be

(cn)2 +2 (cn) +1 6-12.b
transitions, but due to the fact that the system can go
forward to one state only, then the reduced number of
transitions (in A) is true. The number of zero (impossible)
transitions is found by subtracting Eq-12.a from Eq-12.b,
and is found to be

cn(cn-3n)+2n2 6-12.c

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I\D
117

1-------------
O O o o 1IrH 031 1) U

- ■■■■■ — ■■n
>

o o ° o
I
l»H

< 1 1 1 <J X

o o o o X o

• . . .

00 o o o o

O o o o o o

11
0 0 1

P3ICN1
ICQ ICO 1 o o

IO 03 IrHW 1
1

<3 Icm 1
1<|C0
1 o o

<3)

r< •
4J *
« <JH
CL.

X o o o

a- -

U ^
4J
1 *I Q) • • • 4)

r 3 » .

O o o o
1

O 1H C >H
CM CO

a
COII

O'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

f 1-Cu e-pt+ i ^)e 0i!

A
1

11

12
; <

In
\

i = 1,2, . . . ,c

i-(„ .-*+ Lj$L e). . . 0
•At

>

11 (p.veT̂ P„ue~Ut

12
X = (

-ut -yt P-̂ ue P2ve

m p2W-“
i = 2,3, . . . ,c

• • Pn^
-ut

pnue -ut

>

jit,. . p ye /n

11 / (tA)ie"tX

i

12
;<

in

cl
c2

•<

cn

1! . Ni -tA (tA) e
IT

l-pe
0

-ut

1-ue-Ut

,,«i -tA (tA) e

>

i!

0
0

1-ye -ut

>

Note: other than the first row and first column, all other

submatrices are of dimensions nxn and we have c of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

submatrices. Also observe that the principle diagonal and
the upper diagonal are nonzero, all other entries are zero.

The utilization of the PE's is defined as:
^ Expected no of PE's in the busy state
N Total no of PE's in the system

where t = (IP +2?12+ ...+nP)+(lp21+2p22+ •••+nP2n)+ •” +
(IP +2P _+ ...-hiP)cl c2 cnor t|> = n 6-14a

= £ J-Pn
1=1 iZ1 n

PPE = ^ 6-1 4b
The system utilization, as generated in chapter V, is given
by

P “ (1 - P) fi I Ewsys o d -15
therefore, system throughput is

T = C p) x u 6-16sys *sys
The average number of Jobs waiting in the queue is given

by
N = E[L] = O.P.. + l.P„, + 2.P.. +...+ (c-l).P .q q ij 2j cj

j — 1,...,n
i e n c

\ - Z 2 H (i-D.Py
q j-1 i-1 13 6-17

Note that if there are i jobs in the system, then, there
are (i-1) Job3 waiting in the queue. The average number of
Jobs in the system (in queue plus in service) is

Nsys = 1 * Pij 6-18
3 = 1 i = l J

Thus by subtracting Eq-17 from Eq-18, we obtain the average
number of jobs in service.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120

In order to calculate the average job response time,
Littles' formula is applied.

number in system
average job response time = Tw =

actual arrival rate
T =*(N / X) = (N + N)/ X = (N + 1)/ X c 1Qw sys a q s a q a o-iy

where la is the actual arrival rate, and is found by the
following,

Xa = the ideal arrival rate x the probability the system
is not full

Aa= X (l - [P , + P_ + . . . + P]) .cl c2 cn
Xa = X (1 -y.P .) 6-20

1=i C3n
where T"*aP is the probability that the system has a full

j=icjqueue and a busy group of j servers,finally, Tw is found as

Tw = (1 +j 5 5 (i_ 1) ‘ Pi j } / C XC 1 - X I pc j)) 6-21

From Eq 6-19 we see how to obtain the average time spent in
the queue and in the system. The above system of equations
are solved using APL, the program listing is shown in
Appendix D.

6.4.2 The Simulation Model
The simulation model for the array model is somewhat

similar to that of the controlled multiserver model. The
major distinction in this model is the allocation of the
number of PE for each incomming job. For an n-PE system,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

each job is allowed to seize between two and n PE's. Note

that at any given instant, the single control unit employed

can only serve one groupe of PE's, and the rest of the PE's

will remain idle.

Simulation is performed on two levels, macro and micro.

The macro level is used to validate the analytic model. The

macro model is associated with the jobs in the model,

whereas the micro model is associated with the

macroinstructions execution. The macro analysis flowchart

is given in Figure 40.

On ' the other hand, the micro model consists of two

segments. One segment is concerned with the job arrival,

and the other segment is associated with the

macroinstruction in that particular job. The two segments

work interactively. The overall flowchart for the

simulation model is shown in Figure 41.

A Poisson arrival and exponential service time

distribution are assumed. The number of jobs in the system

is not that critical in the analysis of the micro model.

However, the number of macroinstructions in a job is of

concern for it will have a direct effect on the performance

measure. As mentioned earlier, the controller can only

serve one job at a time, and as long as it is busy serving

that job, it will do that until completion, nonpreemptive.

The results of the analysis are discussed in section 6.6 .

The simulation programs are given in Appendix E.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C S t a r t) 122

ul

one

Lost

Terminate

Execute

Print stat.

Generate
arrivals

Set system
parameters

Seize the

Activate

Enter queufe

Assign CU&
PE serv.time
a l l o c . //of PE

Figure 40: The Simulation Flowchart for the Macro Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

(Star

Job
ArrivEil

t
Assign #
of Inst.

'
Assign the
.# of PE's

<D

Wait

Activate
j ob

Terminate

Macro
Inst, ar r ­
ival

CU & PE
service time
assignments

Enter
i n s t .

the
queue

Seize
PE's

the

Execu
Macro

te a
inst

Inst«-Inst-1

ActivateTermi te the next
j ob

6

Figure 41: The Composite Flowchart for the Array Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

124

6.5 POSSIBLE APPLICATION EXAMPLES

Writing algorithms to maximize the utilization of the

array system is one of the most challenging tasks. In the

given organization, each PE can have access to all of the

PE's in the system. Clearly, this kind of interconnection

suffers from a delay problem when dealing with large numbers

of PE's.

The system described above can be used in the following

organization. Consider outside jobs that are arriving to

the system queue as transactions. A number of PE's will be

allocated to each job under execution. This is an open

network type. The jobs are assumed to perform vector

operation only. Each job is considered not to utilize the

full power of the PE's. In some cases, and for a particular

job, a subset of the whole PE set might be used and the

remaining PE's are left idle, thus reducing the total PE

utilization. Not using the full power of the system is

clearly an undesirable drawback. This fact by itself

constitutes the major disadvantage of this kind of

organization. Two application examples that use this kind

of systems will be illustrated is detail.

Example 1:

Consider an array system that is used to read data from

several locations such as in a weather station or from

several identical sources (satellite and radar tracking

stations). We are interested in finding the average data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125
read in each case.

The program for doing this is the same for all of the

PE's (single instruction stream), but each PE has its own

data path (multiple data streams). Let us make the

following assumptions: the number of PE's in the system are

known and are even. The different data are stored in the

local memory of each PE. After each set of data is read,

the vector addition is performed and the final result is

stored in the main memory for further calculations. The

intermediate results, however, are stored in the lower

indexed PE of each PE pair, i.e. [PEi] [PEi] + PE [i+1]

for i=1 , 2 ,...,n-1. The flowchart of Figure M2 illustrates

the procedure in detail. The notation f”lo^ M*j signifies the

ceiling of log^ M (the next higher digit that is greater

than or equal to log^M), and M is the number of elements in

the vector. Furthermore, assume that the number of

processing elements in the system are equal to the number of

elements in the vector.

It is noted that in each subaddition, the number of

components in the [I] vector will reduce by a factor of one

half. The utilization of the PE's is 100? in the first

step, 50? in the second step, etc. Mathematically, the

utilization can be expressed as:

p j = (1/ 2i“1) x 100 for J= 1 , 2.....log2M

where j indicates the step number. The average total

utilization is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

K= 0

one

l+(n-l)h]I]a ll,l+h,l+2h,l+3h

n-1

Per f orm t he
necessary
calculation

Activate al]
the P E ’s

R e s e t t h e
local Mem.

A [1+1],
Sat E U f r o m 8the
first PE to
the Mem.

Figure 42: The Flowchart for the First Example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127
lo g 2M

< 2 Z p4) / L°8?M
3-1 3

= (2x100 / log2M) [1 - (1/2)((1°82M)+1)] =(2xl00/k)[l-(l/2)K+1]

where K=log2M. Comparing the above algorithm with the

uniprocessor case we notice that the array system takes log

M instruction cycles, whereas the uniprocessor case takes

(M-1) instruction cycles. Consequently, one should observe

greater significance for higher M. As an example, for a

16-element vector, the array system will take 4 cycles

compared to the 15 cycles in the uniprocessor case. The

graph of Figure 43 provides a plot for the above two cases.

Moreover, using higher M will require a higher number of

PE’s, hence more complex interconnection network.

Example 2:

In this case we discuss another possible configuration in

which each PE is regarded strictly as an input channel, thus

providing a multiport input system. This application is

desirable in data aquisition environments. The same program

code is used to direct the activities of all the PE's. Each

data path will have its own input channel (i.e., its own

PE). In this case the number of PE’s is assumed to be

fixed. This is done at the design stage since the number of

data input lines are assumed to be known. In some real time

applications this configuration is a typical one.

Furthermore, assume that the rate of data input is always

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

40
Number
of Ins
cycles

30 Uniprocessor

20

flog^l For the Array
Processor.

0 2 4 8 10 16 20 3032 40 64
M (Number of elements

In the Operation)
Figure 43: The Uniprocessor Versus the Array System Cycle

Requirements

slower than the rate at which the processors execute the
program. This last assumption will assure the reading of
correct data. The size of the main memory should be large
enough in order to accommodate data for the desired period
of time. The readings of data and time take place in the
processing elements section. The program is executed over
and over again, each time reading a different set of data.

The microprogramming ability of the system provides the
individual control of the PE's in the processing section and
the PE of the control section. The flowchart shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129

Figure 44 precisely illustrates the procedure discussed
above. The main and local memories content are shown in
Figure 45 and should be read in conjunction with Figure 44.

As a final note on the array system, the following
drawbacks and limitations are discussed. The serious
problem with the array system in general is that the failure
of any of the PE's will jeopardize the operation of the
whole system. As a result there should be a supervisor
processor that will detect the faulty PE. In case a faulty
PE is detected, then, there are two alternatives, either to
bring the whole system to a halt (a clear disadvantage),
or to replace the faulty PE with a standby PE. The idea of
having a standby processor is not very favorable for it will
complicate the interconnection even further. To be very
reliable, there should be more than one PE for each PE
location. The array systems are highely specialized. The
system, very often, is only suitable for the application it
is designed for.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

m &
^ i ^ T F V T ' . l

130

Figure 44

CU issues
command to
all the PE's

PE 1s read
data in cons,
memory locat.

k*0
1*1

1
stop the
S||ding of

i*---
Enable the
data path
from PE[I]

N^/Done
“\k+l>I j

0
The Flowchart for the Second Example

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

Perform che
necessary
operacion

one

Reset the
o?Clllm£E

n: number of PE's
h: the time interval for reading the data

number of memory locations required to store data
!= h/IAT of data
0 $ k $ | for looping
l s i s n purposes
IAT: interarrival time

Figure 44: (Continued)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

Local Mem Local Mem Local Mem Main Mem.
of PE n of PE 2 of PE 1 ____

tfi] WllJ til y 'Ti T tin x'L'iT" data
t&J W[2] m Y fel t[2j X [2] 2 from
m W[31 m Y [31 x [3] 3 PE [1]
• I

f £+1 data
form

21 PE \2]
tw W[l] tin y ai tW X U1

n-1(1+1) data
from

nl PE[n]

Figure 45: The Main and Local Memories Contents

6.6 ANALYSIS OF RESULTS

Two different analyses are performed, macro- and
micro-analysis. In the macro analysis both simulation and
analytic models are studied. The job as a whole is
considered as a transaction unit in the system. The system
capacity, c, the number of PE's, and the arrival rate are
the parameters that are varied. The resource utilizations
and the average queue length as a functon of system capacity
and the number of PE'3 are the main objectives in this
analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

6.6.1 Macro-Analysis of the Array System
In order for a simulation study to be reliable, it is

necessary to bring system to a steady-state condition. That
is, it is necesssary to decide the confidence interval. The
confidence interval is estimated by some experimental
studies. The simulation model reached the steady-state
condition in about 3000 time units, or when about 60 jobs
are passed through the system. The analytic model is valid
for n>4. The simulation results confirm the validity of our
queueing model as shown in the different graphs. In Figure
46 the system and PE utilization are plotted as a function
of the arrival rate. It is noted that the system
utilization is always greater than the PE utilization, since
the system utilization includes the CU utilization. The
average queue length is shown in Figure 47. The flat region
is where the service rate equals approximately the arrival
rate. When the number of PE's is varied from 5 to 20, the
graphs in Figure 48 are obtained. For a higher system
capacity, the utilization of both the system and the PE's
are higher. It is worth observing that the average queue
length is not dependent on the number of PE's. This is true
because the extra PE's introduced are also utilized by the
same instruction, as confirmed in Figure 49. Moreover, the
system capacity is also varied from 5 to 30. The system and
PE utilization, and the average queue length are computed
and plotted in Figures 50 and 51, respectively. Finally the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perm
ission

of the
copyright

ow
ner.

Further
reproduction

prohibited
w

ithout
perm

ission.

1.0
0.5

Analy.

0.8

Analy.
•H

±* 0.6 Simul.

0.4

0.2

076
X (Arrival Rate)

0.50.20.1

Figure 46: The PE and S y s t e m Uti l i z a t i o n as a F u n ction of X

www.manaraa.com

135
total system utilization and the PE utilization are plotted
for different arrival rates. The higher the arrival rate,
the higher the utilization will be, as shown in Figure 52.

The PV (probability selection vector) used is consistent

in both the analytic and simulation study. However, the

model (especially the analytic) could be simplified a great

deal by using a PV of the form:

PV = t o o . . . O i l , that is, the whole PE subset will
be allocated to the job under execution. The queue length,
consequently, will be independent of the variance in the
number of PE's.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

vO

m
VI

O

oCOtp§U3T snsn() aSej3AV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

47
:

Th
e

Av
er

ag
e

Qu
eu

e
Le

ng
th

as

a
Fu

nc
ti

on

of

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

0.8 Psys (AnaiyJ
(Simul)

psys (Slnml)
(Analy)

c=10
c=5

eo
U 0.7
•Hr—I ftpu (Analy

/O (Analy
1 CPU (Simul 'Pcnu

c=10

c=5
0.6 (Simulc=10 cpu

0.5

10 15 20
n (Number of PE's)

Figure !|8: The Uti l i z a t i o n as a F u n ction of n

137

www.manaraa.com

138

-

-

-

-

HrH >* 3 pH3 rH B CO
e to *H c

•H C C/5 <
cr <

-

o if)o li lir—I II o aII O «■
a

-

—

-

Mi

—

-

—

—

-

—

_
-I J-l __L j__ > 1 i t i i __l_L, .i

m
cs

CO CJ H o
qnSuaq ananp aSeaaAV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

lJ9
:

Th
e

Av
er

ag
e

Qu
eu

e
Le

ng
th

as

a
Fu

nc
ti

on

of

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

1.0

0.8

a
° 0.6 U«j
N

E3
0.4

—
X = 0.4
p = 0.5
n = 10

Analy.

_ /^sys i

r~ ■ ■■<>------------i

Simul.

.Analy. i

- / ’cpu (>Simul.

—

__I l l . . 1 ... I -J__ 1 1 1 - 1— 1__L_ 1 1__1— 1 1 1 l.l 1 ™

0.2

10 15 20 30
c (System Capacity)

Figure 50: The U t i l i z a t i o n s as a Function of c
CO
VO

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

60 Simul.

Analy.O'

0 5 10 15 20 25 30
c (System Capacity)

-Cr
Figure 51: The A v erage Queue Length as a Function of c °

www.manaraa.com

141

on

in

A
■SA.

CM
VO CM

m

>v am u

O 00 vO -T CM
ih o o o ouo-pBZTT-pn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

52
:

Th
e

Ut
il

iz
at

io
n

as
a

Fu
nc

ti
on

of

n
an

d

www.manaraa.com

142

The state transition diagram of Figure 39 will reduce to
a one which has only the last row, i.e.,

Therefore, it can easily be treated as a one-dimensional
algebraic system. In Figure .53 the total system utilization
is giyen as a function of system capacity for different
numbers of PE. The utilization will greatly be affected by
the service and arrival rates.

6.6.2 Micro-Analysis of the Array Model
For the micro-analysis, only simulation experiments are

performed. A fixed number of jobs are assumed to be in the
system. Each job contains a fixed number of instructions.
When a job is executed it uses the same number of PE's
through out the execution period. This last restriction
will ease the analysis somewhat. The time for macro­
instruction fetch from the main memory to the IR is
designated as the interarrival time. The service time of
the control unit and the microinstruction access time is
defined as the total controller's execution time. The PE's
will have identical service time distribution since all are
assumed to perform the same microinstruction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In Figure 5 4 the system and the PE's utilization are
plotted as a Function of X for different values of c. The
maximum PE utilization is reached when p approaches X • The
queue lengths are 3hown in Figure 55. For \ 20% higher than
p, the average queue length reaches the system capacity and
remains unchanged thereafter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14 4

inm m o o«da<a©
£d)uco
w

o
CM

n

o

© co

in
CM

o o
uo-paBZfXfaa msrjsAs

CM
©

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu
re

53
:

The

Ut
il
iz
at
io
n

as
a

Fu
nc
ti
on

of

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

1.0
The Micro-Model

PCU = 0.005
FPE = 0.0095 ■

0.8
G
o•H
cdN•H
^0.6

Paysc=

c=15

0.4

c=10

c=15 cpu
0.2

0 0.3 0.4 0.5 0.6 0.7
X x 100 (Arrival Rate)

Figure 54: The U t i l ization as a Function of the A r r ival ui
Ra te

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

c=15
The Micro-Model
n = 10

005FCU
FPE = .0095

12

- < >c=10

00

0.5 0.6 0.70.3 0.40
X (Arrival Rate)

-tr\Figure 55: The Average Queue Leng t h as a Function of \

www.manaraa.com

147
6.7 REMARKS

The direct execution computer of chapter II can be

referred to here in order to compare against our array

organization. The similarity between these two systems

organizations lies in the separation of data and control.

In Chu's direct execution machine [CHU81] the control

processor executes tokens which are part of the control

flow, whereas the data processor executes tokens which are

part of the data flow. In our design the lexical processor

is absent. Therefore, all the program instructions to be

executed reside in the main memory of the system (that of

the MPE). However, the instruction set should have two

distinguished groups of instructions. One set of

macroinstructions is used for the SPE and another set for

the MPE. The real burden is with the controller and the

microcode. Each op code (for SPE and MPE

macroinstructions) will have its corresponding microcode.

The data-type instructions that are specified for the SPE

units should enable the SPE and disable the MPE, whereas the

control type instructions and data to be performed by the

MPE should enable the MPE to receive the microcode and

disable all the SPE's. One bit of microcode is designated

for each PE (SPE and MPE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter VII
DATA FLOW MODEL

7.1 DATA FLOW CONCEPTS

Data flow computers are based on the readiness of the
operands involved in the computation. Unlike the
conventional systems (e.g., von Neumann machines) data flow
system do not execute the program in a sequential fashion,
but rather, an instruction is executed or prepared for
execution when all of its operands are ready. For example,
an Add x,y instruction will initially wait in the main
memory for the operands x and y to be either defined or be
supplied as a result of execution of other instructions.
When the operands become available, then the instruction is
sent to a free execution unit (PE).

Sequencing through the instruction of a given program is
an attribute of the von Neumann machine. The data flow
principle utilizes the flow graph method in order to envoke
the parallelism inherent in a program. Thus only those
program that are suitable for parallel application can be
implemented on a data flow machine. The theoretical ground
work for data flow computation can be traced back to 1966
[WATS791. At MIT a team led by J. B. Dennis pioneered the

- 148 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

research for the realization of data flow machines [DENN74].
A number of systems that use the data flow principle have
been developed and studied IAGER82 1.

7.2 DATA FLOW PROGRAM EXAMPLE
In order to illustrate the data flow program execution,

we use the following simple example:

INPUT a,b,c,d
Begin
x := ((a+b) - c)/(d * a)

End.
OUTPUT x

In order to execute this program, it should first be written
in data flow graph form and entered into the memory. The
memory entries consist of two main parts: instruction store
entries and initial token entries. Let us derive the data
flow graph for the above program. Developing the data flow
graph is straightforward although it can be be tedious in
some instances. The graph is started with the initial
tokens, i.e., the input variables, in this case a,b,c, and
d. For each operation a box is defined. Adjacent to each
box an address is indicated. To each box there is a number
of links going in and out. In this example, two links in
and one link out, as shown below in Figure 56.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150
a
11

A21 x

Output

Figure 56: The Data Flow Graph

Instruction store entries:
Addr. Opera tion Next Instr.

Addr A'
LH/RH

A 1 ADD A3 LH
A2 MUl A 4 RH
A3 SUB A 4 LH
A4 DIV Output
Initial tokens entries:
Value Lable Next Instr.

Addr LH/RH

a A1 LH
b — A1 RH
c - - A3 RH
d — A2 RH

Next Instr.
Addr B'
LH/RH

Next Instr.
Addr LH/RH

A2 LH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

. 151

Since the op code used requires two operands, therefore,
at each address we should have two inputs. Some of the
inputs are initial values of the tokens, while others are
the results of execution of other instructions. In this
simple example, we note that address A1 has both of its
operands ready, i.e., A1 LH and A1 RH, where LH and RH stand
for left-hand side and right-hand side, respectively. The
instruction at address A1 will then be ready for execution.
The same applies for the instruction at address A2.
Executing the instruction at A1 will make the instruction at
address A3 ready for execution since A3 has the RH operand
ready, and A1 supplies the LH operand. By inspecting the
data flow graph of Figure 56, we observe three levels of
executions:
level 1: Operation at A1 and A2 are under execution
level 2: Operation at A3 is under execution
level 3'- Operation at A4 is under execution.

Hence, if the system has n processing elements, only two of
the n PE's will be used concurrently at any one point. For
this particular simple program only two processing elements
(or less) are required. However, there exist applications
where hundreds or even more processing elements are needed
concurrently. One such example is in digital signal
analysis and vector computation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152
7.3 THE BASIC HARDWARE DNITS FOR A DATA FLOW SYSTEM

A basic data flow system consists of several modules.
Each module operates asynchronou3ly and independently of the
other modules in the system. Each module processes the
incoming data to its port and then sends it to the next
module in line. Figure 57 shows the overall interconnection
of a typical data flow computer [DENNT^l.

Out buffer
con

PE 1

PE 2

PE 3

In Buffer

sr

in outIn Queue
out in

Out Queue

Distribution Main
Memo­
ry
Sect­ion

Arbitration

Figure 57: The Basic Blocks of a Data Flow System

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

In this section selected portions of the proposed data
flow machine architecture will be examined in greater depth.

7.3.1 The PEQPE to PE Connection
The PEQUE is the queue that holds the ready instructions. In
Figure 58 the connection from the PE to this queue is shown.
In order to avoid the selection of more than one PE, a
priority encoder AM2913 is implemented. For each additional
eight PE’s a new Am2913 is introduced. In Figure 58 we
illustrate, for simplicity, a 3-PE system. The PE's
generate a processor available signal to feed into the
Am2913. Depending on the output of the encoder, only one
set of (ai,bi) gates will be selected, which in turn enables
the data path to the selected PE. The outputs of the (ai)
gates are fed to an OR logic. The OR gate (C) generates a
low to high signal whenever any PE is available, and
provides the PD signal to the queue.

7.3.2 The Processing Element (PE)

Since the operation packet consists of the operation as
well as the destination addresses, some bits in the byte are
used for the control purposes. If the most significant
three bits are used, eight possible signals can be
generated. Table 4 defines these signals. The control
signal 000 is used for the selection of the op code. When

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Priority
Encoder

PE

Highest
Priority

Data
Bus

PE

Lowest
Priority

)ata out

OR FIFO

Data in

Figure 58: The PEQUE to PE connection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

155

the byte (or the word) has its most significant 3 bits equal
to 000, then the byte carries the op code portion of the
packet.

TABLE 4
Definitions of the Signals

Signal Function

000 op code
001 opnd 1
010 opnd 2
011 dest 1
100 dest 2

•

111
•

last byte
Byte serial transmission is used. The control signal 111
indicates the end of the byte transmission. Figure 59 shows
the distribution of the different signals in the PE circuit;
note that each PE is a complete bit-slice microprocessor.

7.3*3 The Queueing Circuit
The queueing circuit is very straightforward. The logic

should provide the following signals:
PL: parallel load (in)
IR: input ready (out)
PD: parallel dump (in)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

<8> EN.
r — l

Instruction
Register

nzn
- MAPPERITT

SEQ.nzr
_ Control ^store

EN
D
E
S 1

D
E
S 2
ENI

2903
ALU DB

DA

LAT S3— ©

2,
3„4.

"Efr
L
*

I©

-C 2 E
3 C B
0 C
D
E

L
A
T
C
H

Figure 59: The PE Circuit Diagram

156

B
U
F
F
E
R

aibi

OR: output ready (out)
The input ready signal provides an enable input signal for
the memory buffer and the memory control unit provides a
parallel load (PL) signal to the queue. The other two
signals (PD and OR) are for the communication between the PE
and the queue. Whenever a PE is available, a PD signal is
generated that is input to the queue. The OR and PE
available signals will route the data to the specific PE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

157

The Am28l2 FIFO chip can be used here. It is a 32-word x
8-bit FIFO and is expandable in both word and bit
directions. The queueing circuit between the PE and memory
is constructed in a similar fashion.

7-3-4 The Memory Section
The memory section should contain the necessary logic for

the selection of the ready instruction and the distribution
of results from the previously executed instructions, thus
forming the most complex part of the system. A complete bit
slice microprocessor is used for this control. In fact, the
memory section is considered the central control unit for
the whole system for the instructions are initiated and
maintained here. We will discuss the main activities that
take place in the memory section.

The main memory blocks can basically be represented by
the blocks of Figure 60. It is assumed that the memory
contains instructions of a given program. Moreover, the
program is assumed to contain some degree of parallelism.

The instructions and the tokens reserve two memory
sections of the form:

op code 1st opnd 2nd opnd Next Inst,
address 1

Next Inst,
address 2

opnd I
cntr I

Value Inst, address 1 Inst, address 2
The following steps take place:

1. First start by pointing to address of the 1st opnd in
A and latch it to a register.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

Address >
Memory

Control

ToQue.
Network

Figure 60: The Basic Blocks of the Memory Section

2. Jump to the first address in B and sequence through
all the addresses in B. In each case try to match
instruction address 1 and 2 in B to the address
latched in the register in step 1. If there is a
match, the value at the address in B should be
latched to address in A, decrement the counter by 1,
and check the operand counter against 0. Do the same
for the second operand.

3. Repeat steps 1 and 2 for all instructions. Note that
the above steps are only done once, i.e., at the
beginning of the program execution since the value of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159

tokens are only defined in the definition phase.
4. After performing step 2 and (or) step 6, whenever the

operand counter is equal to 0, the instruction should
be passed to the PE queue (PEQOE) by enabling the
buffer.

The path from the PE to the memory is done in the
following two steps;

5. The result is passed to the distribution network
queue. When a resultant packet arrives (which
consists of two parts: result and address), the
result is placed in the instruction cell whose
operand address (1st or 2nd) agrees with the
destination address in the result packet.

6. The control unit in the memory should deal with the
incoming packet and place the value in the proper
address. Repeat step 4 if necessary.

7.4 THE DATA FLOW MODEL
In this section we will apply two analysis techniques to

the data flow machine. We start by configuring the queueing
elements involved in the model construction. The
illustration 3hown in Figure 61 basically represents the
desired model. To simplify the discussion for the moment,
the model is divided into three different subsections,
namely 1,2, and 3 as indicated by Figure 61. By inspecting
the model of Figure 61 , one can realize the complexity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160
involved in analyzing the system analytically. For this
kind of queueing networks, however, one usually pursues
simulation rather than analytic techniques. Furthermore, by
treating the whole model as a number of queues, one then can
apply standard queueing techniques to each section
independently of the other sections, as pointed out in
chapter IV.

The network is represented in a nodal form by the
following:

(1-(p+q))p.
nj:

and each node can be treated independently. The nodes used
here are of mixed types. Node 1 is an (M/M/n) system, node
2 is an (M/M/1) system, and finaly node 3 is an (M/M/1)
system with feedback. Of all the three independent
sections, we will only derive the steady state (balance
equations) for section 3. The results for sections one and
two can be obtained without much difficulty I KLEI75al,
IWHIT751 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161

PE 11

PE 2

The PE section
Queue

PE n
The Results^
distribution
section.

The process­
ing elements
section.

The main memory
rS section.

Figure 61: The Queueing Model of a Data Flow System

7 • 4 • 1 The Analytic Model
Deriving the state equations:

As mentioned earlier, only the state equations for

section 3 will be derived. We assume the system has k

instructions (transactions), i.e., a full system. The

following parameters are of interest:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162
u3 " The system service rate (macroinstructions/unit time)
p : The probability that the instructions are ready and

will be fed to the queue of stage 1.
q : The probability that the instruction will be output.

As a consequence, (1-(p+q)) is the probability of remaining
in the system. The above probabilities can easily be
estimated from a real data flow program. The state
transition diagram is represented by Figure 62.

(p+q)
k-1 k-2

u(Wp+q))u(l-(p+q))

>(p+q)
• •

Figure 62: The State Transition Diagram

Let 1-(p+q) = z ; (p+q) = x ; u2+ \ = p ; and g = Y /u3 x

PQ 4> » Px U3* ► Pi ’ P0 (^3X) " Po
P1 C* + u3x) - ?gii + P2 u3 X

p. - ^ ((*+ w3*)/(w3* - 1))2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

163

P = P (# / u,x)2 = P £ 2 o T 3 o

and P = P 8 3 o

u , +x n
In general p =. p e = P (. ■?-) 7-1n o o n 3(p+q)
In order to compute Po (the probability the system being
empty) the normalyzing relation is applied and

K
T PQ ((l̂ +*)/ (Hj (p+q))n = 1

1 - ((U2 +*)/<Hj (p+q)))K+l

1 - ((U 2 + X) / (P 3 (p + q)))

1 - ((P2+^)/ (P3 (P+q)))

1 - ((l̂ +X)/ (Uj (p+q)))K+l
7-2

Now, substituting the final expression for Po in 7-1 we
obtain the the following general state prbability

n1- « y *) / (Hj (p+q)))

. K+l

(Uj+X)

l_ v3 (p+q' 7-3l- ((y »)/ .(Hj (p+q)))
The parameter u in Eq 7-3 signifies the fact that the state
probability does indeed depend on the service rate of stage
2. Stage 1 is an example of (M/M/m):(FCFS/k/») and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

solution in general is given by
k

P, = P — i— - 0 ^ k - m-1
0 kl̂

p . P (^/ W)k .((m)“"k /m.) m ~k o

Next Po is calculated
K
2 \ - 1k=0 K
m-1 K
n fk +n \ ■ 1k=0 k=m K
m-1 k K . ,
y~* P i + y p. <4)k ^\ 7? o , . iifc ,— 1 0 ~ mlk=0 kj 11 k=m
let k-m = z

• P (Xlk 1 + P f-L-)z+m Isl”•• f- Po (“ } T ^7} o “ ~k=0 z=0[m-1 , , K-m . . N—zyi , Xsk 1 <r-i , XxZ+m (m)

S (T ! - + g (̂ -
let (4) - pm-1 _ k m K-m zJL_

k=0 z=0 m
k m K-mP
k! + -2-rmj 2z=0
pk Pm_L __ 1-

[—
1kj in I

] -

?o l^o 1,1 + [T T 15"m

- f v 3*0si 2-. k!
k = 0

:m 1- (£-)K-nrf-1
+ Ti [i- (-“)01

7-4a

k - K 7-5a

1

-(z+m)
= 1

] -

= 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

Therefore, equations 7-*ta and 7-5a become,

7-Ub

X.k (m)
U m I

m-k
]>(-“) 7-5b

where m ̂ k - K
Stage 2 is the classic (M/M/1): (FCFS/l/oo) case, the solution

is given by

In subsystem 1, the queue holds all the instructions that
are ready for execution. As soon as a PE becomes available,
the instruction at the head of the queue will seize it.
The overall average service time is considered as the
average service time of all the PE's.

In subsystem 2, the queue will hold only the resultant
package. The result of executing an instruction in the PE
will be tagged to each of the destination addresses in the
execution packet. For example, if the execution packet is
of the form :

7-6

0 otherwize

p code, opndl , opnd2 , destl ,dest2 , dest3
then the resultant package produced is of the form :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

166

<Result , Dest1>
<R esult , Dest2>

and <Result , Dest3>

These three packets will be in the queue in this order.
This subsystem will examine each resultant packet and place
the result in the memory at the address specified by the
destination part of the packet. The queue is of the FCFS
type and only one instruction is serviced at a time. The
capacity of this queue is assumed to be I. The capacity can
be calculated by

I = Number of PE's x (Average number of destination
addresses in each instruction)

The third subsystem represents the model of the central
memory of the system. The memory can be modeled as one big
queue whose size is M (the size of the memory).

The utilization of the PE's equal to the expected number
of the PE's in the busy state to the total number of PE's in
the system.

p pE = — E [PEg] 7-7
The number of instructions in the system can be defined
according to the following:

\ysM ' \s(t) + "E(t) + V C)
Let (t) designate the probability that the system is inihj
state E., . , ihj
where 0 <i < (K+1+n) = K for K » n

0 < j < N
0 <h < (K-n) =" K for K >> n

From Eq 7-7, the E CPE] is given by:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(1-Pool + 2’?o o 2 + . • + n.P)+ oon
(1*Poll + 2,Pol2 + . - + n.P .)+ oln . . .+

(1-Pokl + 2’Pok2 + • • + n.P)+ okn . • .+

(1-Piol + 2*Pio2 + . - + n ’P£on)+ . . .+

(1-p*kl + 2,FJtk2 + . . + n "Pikn)

167

ft. ft. 11, t
E f PE 1 * £Z1 ? t ?-j i .p11 1 rE,B J i-0 h=0 j=l J ihj

Therefore, the utilization of the PE's is found

Equation 7-8 can be reduced even further. We lump Nqg and NR
into one parameter (Nw) to represent all the instructions in
the system that are not under execution. This later
modification will reduce the complexity of Eq 7-8 especially
when a large memfory is employed.
Therefore, N (t) = N (t) + N (t)

W q tv

In fact, the PE section sees and NR indistinquishable.
Also note that the transfer rate from the memory to the
queue is not significant. Now, the system is considered to
be at state Erjat time when

N (t) -r N (t) = N (t)=r and N (t) =jqs K w t,

where 0^r^2K and O^j^n . P^(t) is the probability that the
system is in stste E^ . When working in steady state
conditions, the following are true,

lim Njt) = Nt—k» qs qs
lim N_(t) = Npt-*00 K- K

and lim N (t) = Nt— w w
Therefore, Nw= Nqs+ >and equation 7-7 becomes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Observe the reduction in the number of terms in equations
7-9 and 7-8, there are 2Kxn terms in Eq 7-9, and kxKxn terms
in Eq 7-8. That is, Eq 7-9 reduces the number of terms by a
factor of (K/2) which is significant for large memories.

The average number of instructions waiting in the queues
equal to :

"q ‘ [1-P11 + 1-P12 +"'+ + !2'P21 + 2-P22 +"-+ 2-P2„1+

. . . +[2k.P2t l + 2l.P2k 2 +...+ 2t.P2k a]
2k n

», ■ z : z: * p., 7-’°q r=l ĵ lDue to the fact that the PE's can not be idle while an
instruction is ready and waiting, then the only condition
under which an instruction is truly waiting are n for
l^ii2K, and as a result Eq 7-10 becomes

2k
n . r i . p4 7-11
q inThe APL program for the analytic case is shown in appendix

(F).

7.4.2 The Simulation Analysis
Two simulation analysis will be performed,

Case 1: The general instruction execution type. The
instructions are treated as a whole and the decisions
are based on probabilities rather than the exact
arrival of operands.

Case 2: The more detailed type. A typical data flow

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169

execution is simulated. In this model each
instruction cell (i.e., op code, operands, dest­
ination addresses) is completely specified.

7.4.2.1 Case 1
Case 1 should support the analytic study of section

7.4.1. The simulation flow chart for this case is shown in
Figure 63. Due to the GPSS limitation, a maximum of 200
transactions (instructions) can be present in the system at
any given time. The case 1 simulation program is given in
appendix G. The results of simulation and analytic
solutions are presented in section 7.5 .

7.4.2.2 Case 2
The second simulation study demonstrates the exact

execution of a typical data flow program. It shows the
power of GPSS language for these kinds of simulation. Each
instruction cell is represented by a number of parameters.
The program to be simulated is shown in Figure 64. Each box
represents a specific operation. To be general, we will not
specify the kind of operation and will represent the service
rate of each PE with an exponential service rate. Parameter
4 is used to store the service time of each PE. If desired,
the specific service time can be supplied. Figure 65
represents the flowchart of the second case. The memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure

Cstar0
170

Hold

Specif
number
I n s t .
svsteir

y the
of

in the
.

Arrival of
Instructions

Assign PE
service time

Enter Mem. Que.
f""= —

Process the in­
struction in
the Mem.

__ :!___
PE DoneQueue

Execute the
i n s t . & exit.

Process to
Ifcmory

Terminate
the inst.

S3: The Simulation Flow Chart for Case 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

171

cells that correspond to the program shown in Figure 64 are
given in Figure 66. The numbers adjacent to each cell give
the identity of the cell. The parameter definitions are
given in the program listing in appendix G. With a little
modification, the program can be used to simulate
vector-oriented problems.

19 22 25W
T " ^

x2 x3

Figure 64: The Example Program to be Simulated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

Define each instruction
in the system, and place
in Memory Queue.

Admit one Instruction

Remain in
MEMQU

Enter the
PEQUE

Increment Opnd
counter by 1
and test for

—^Done binstruction
readiness.

Enter
QllP.llfi

Save the
Destinat
lon Addr

Output

Output the
Result.

Terminate
Instruction

Figure 65: The Simulation Flowchart for Case 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PI P2
1 1

4 2

7 3

10 4

13 5

16 6

19 7

22 8

25 9

28 10

31 11

34 12

37 13

40 14

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

P4 P5 P6 P8 P9 Pll P12 P13 P16

- 2 2 2 3 20 - - -

- 2 2 5 6 21 ~ - -

- 2 2 8 9 23 - - -

- 2 2 11 12 24 26 - -

- 2 2 14 15 27 - - -

- 1 1 17 18 36 - - -

- 2 0 20 21 29 32 - -

- 2 0 23 24 30 35 - -

- 2 0 26 27 33 - - -

- 2 0 29 30 38 - - 50

- 2 0 32 33 39 - - -

- 2 0 35 36 42 - - -

- 2 0 38 39 41 - - 51

- 2 0 41 42 - - - 52

Figure 66: The Memory Cells for the Program of Figure 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174

7.5 ANALYSIS OF RESULTS

Case 1: As mentioned earlier, both analytic and

simulation techniques are used in this case. The operand

counter of each instruction is not specified explicitly, but

rather probabilistic assumptions are employed. By

specifying the probabilities p, and q, the readiness, or not

readiness, and the completion of the instruction can be

decided. Three possible values for p and q are tested, p.q,

p=q, and p,q. The corresponding results obtained for the PE

utilization as a function of n are ploted in Figure 67. It

is expected for the case when p is greater than q ,that the

PE utilization will be higher than for the other two cases.

Furthermore, the corresponding throughput for the above

cases are shown in Figure 68. The throughput is divided

into two parts, that of the PE's and that of the whole

system. The average contents of the different queues are

obtained and ploted in Figure 69. Note that the queue with

the greatest content is the memory queue. The average PEQUE

content is seen to be zero for this particular example. In

general it can be greater than zero.

Case 2: The results for this case are those of the

simulation study only. As shown in Figure 67, the addition

of new PE's to the system will reduce the overall

utilization of the PE’s and increase the overall system

throughput. Figure 70 supports this fact.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

1.0 Analytic
Simulation

0.8

o 0.6 H

eO’•H
4-JftfN•HH•ri
P

p=q

0.2

20I 25
n (Number of PE’s)

Figure 67: The Processing Elements Utilization as a
Function of n

175

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

12.5
O Systema pe

u3 = 0.2510.0

p=q=.4 • 6=p>q=.2
•3=P< q=.5

p>q
7.50

p<q

,§• 5.0 oo
p>q

p= q2.50

10 15 20 25
n (Number of PE's)

Figure 68: The T h r o u g h p u t s as a Function of n

www.manaraa.com

177
r

I
□

Me
mq

u
O

Re
sp

q
A

PE
q

û
=

0.
5 n

6

u
c3

incs <r o • o — -a* O
crsi cn , n 3 << a a

m

--
--
-
--
--

--
--

--
2.

n
(N
um
be
r

of
PE

's
)

o>rH

1 t

_ J --1--1-- r 1 1 L— f .,,,1... — L J __L_ . I . " oo o o om w h
s^uariuoo anan{) aSa-ia/vy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ig
ur

e
69
:

Av
er

ag
e

Qu
eu

e
Co

nt
en

ts

as
a

Fu
nc

ti
on

of

www.manaraa.com

178

The different queue contents as a function of the number of
PE's are shown in Figure 71. The OUQUE content reduces with
the introduction of new PE's. As more PE's are added, the
probability that the ready instructions remain in the
operation unit queue reduces. The content of the queue will
approach zero when the number of PE's reaches the maximum
degree of parallelism in the program.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179

O H M

00

as

V0

00

rH
33 UOf^BZflT^a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
gu

re

70
:

Th
e

PE
Ut

il
iz

at
io

n
fo
r

th
e

Se
co

nd

Ca
se

www.manaraa.com

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

10.0

Memqu
Respq
PEq
Ui = 0.04
u2 = 0.10
113 - 0 . 2 0

8.0

u
6.0

CO

2.0

20

N (Number of PE's)
Figure 7 1: The Average Queue C o n tents for the Second Case

180

www.manaraa.com

Chapter VIII

SUMMARY AND CONCLUSION

8.1 SUMMARY

This dissertation presents a straightforward approach to
the analysis of the performance evaluation of parallel
architectures utilizing microprogrammable microprocessor
elements. Out of the many existing configurations, three
particular architectures are studied. We feel that these
models and their analyses are representative of a wide class
of generalized networks. The methodology presented should
be transferable to different network models.

Numerical queueing techniques along with simulation
studies are performed. The analytic model is less expensive
to study than the simulation techniques; however, the price
paid is the labor involved in developing the equations to
set up the real model. Simulation techniques in contrast to
the queueing techniques can be used to model more complex
structures. Nevertheless, both queueing and simulation
techniques play essential roles in computer system
performance evaluation. Building the mathematical model can
be a very difficult stage in the performance evalution
procedure. Emphasis should be placed on the factors that

- 181 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

182
influence the flow of information in the model, which in
turn are subjected to certain assumptions.

Generally, there are two approaches for performance
evaluation: deterministic models, and probabilistic models.
The task arrival rate and the task service times are usually
specified by probabilistic distribution functions.
Probabilistic models provide the general overview of the
system performance, especially when system parameters are
not well developed.

We have modeled and analyzed three basic network
architectures: the controlled multiserver model, the array
model, and the data flow model. In the controlled
multiserver model a single control unit is used to control
several independent functional processing elements (each
capable of performing specialized tasks). In the array model
the control unit controls the whole group of PE's or a
subset of the PE group simultaneously. In the third model,
the data flow model, the PE's are selected based on their
availability. Each PE is considered to be a stand-alone
unit, which makes the overall system more reliable.

Certain assumptions were made in each case. Simplifying
the queueing model is necessary in most analyses. The
techniques used in this study can easily (with minor
modifications and depending on the case under study) be
applied to study other similar models.

The design procedure is summarized by the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

183

steps:

1. Setup the queueing (mathematical) model.

2. In order to simplify the model, if possible, combine

the service time of two or more consecutive servers

into one server (as in the CMM case).

3. Insight is gained by performing the analysis at two

levels:

a) The job execution level: Some architectures are

better analyzed at this level. In particular, in

the array model, each job is assigned a different

number of processing elements.

b) The instruction execution level: For some

architectures such as the CMM and DFM this analysis

will elaborate investigation of the system

parameters. In the DFM, instructions are prepared

for execution whenever their operands are ready.

4. Set up the simulation procedure which will supplement

the queueing analysis. By .repeating the simulation

with the assumptions removed, insight will be gained

into the effects of the assumptions made in the

analytic case.

It is very difficult to directly compare these three

models for each model has its own applications and

environment of operation. Our intent is not to compare

these models nor expect them to be universally applicable,

but to provide building blocks and various approches. We

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

181*

hope that network researchers can use the ideas presented in

these three examples to effectively construct and evaluate

their own particular network models. We will, however, make

some statements regarding these three models.

For example, in the controlled multiserver case, the

analysis is based on the instruction execution, whereas, in

the array model, the analysis is based on the job level.

Depending on the job under execution, different PE's will be

selected with different probabilities in the first model,

whereas in the third model (the data flow) the selection of

the PE's is done with equal probability. Unlike the array

and the multiserver model, the data flow model will perform

more reliably in environments where the failure of any of

the processing elements pose degredation to the computation.

As a final note, we should emphasize that in general most

computer architects agree on the following goals in

designing general purpose computing networks:

1. Effective distribution of small pieces of computation

over many processors in the system.

2. Enough modularity so that additional blocks of

processing elements can be easily added.

3. A measure of fault tolerance so that hardware failure

may decrease performance but will not necessarily

halt the process.

4. No dependence on expensive interconnection schemes.

The three models of chapters 5-7 support most of the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

185
criteria.

8.2 FUTURE APPLICATION

With the advent of VLSI, we can foresee the important

role that these chips play in the design of large computer

networks. As computer structures continue to grow in

complexity, in size and in diversity, we need to design

tools to evaluate the relative merit of different aspects of

machine architecture.

For a large computer network it is sometimes desirable to

have different computers at different nodes. The NMSU-MBSE

provides a basic unit in such network. Using bit-slice

microprocessor elements provides better performance both by

the speed of the chip in the data path and the capability

in performing the emulation in microcode.

A number of applications that require parallel

configuration exist such as in image processing, digital

filtering, weather forecasts, seismic exploration systems,

plus others. Reconfigurable parallel architectures may

provide the flexibility that is needed by such systems.

By using a multiple processing elements system,

throughput can be improved, and processing requirements and

capabilities unobtainable by uniprocessor systems can be

satisfied. However, the success of a multiple processor

system greatly depends on successful modeling and

performance analysis of the target network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF REFERENCES

[ACKE78] Ackerman, V.B., A Structure Processing Facility
for Data Flow Computers, IEEE conference on Parallel
Processing, 1978, pf« 166-172.

1_AGER82J Agerwala, T., "Data Flow Systems", COMPUTER,
February 1982.

LALEX78J Alexandridis, N. A., "Bit-Slice Microprocessor
Architecture", COMPUTER, June 1978.

LBACK78] Backus, John, "Can Programming be Liberated from
the von Neumann Style? A Functional Style and its
Algebra of Programs", Communication ACM, V21, no. 8,
August 1978.

[BAERSO] Eaer, Jean-Loup , Computer System Architecture,
Maryland: Computer Science Press, Inc., 1980.

[BASK75] Baskett, and K.M. Chandy, "Open Closed, and
Mixed Network of Queues with Different Classes of
Customers", Journal of ACM, Vol.22, no.2, April 1975.

[BELL71j Bell, Gordon C. and Newell Allen, Computer
Structures: Readings and Examples. New York: McGraw-Hill
Book Company, 1971.

|_E0BI76j Bobillier, P. A. et al., Simulation with GPSS
and GPSS V . Englewood Cliff, N.J.: Prentice-Hall Inc.,
1976.

1.BRIG79J Briggs, F. A. et al., PM4- A Reconfigurable
Multiprocessor 3y3tem for Pattern Recognition and Image
Processing, AFIPS, 1979, pp. 259-265.

[ERIG81J Briggs, Faye A., M. D. Dubios, and Kai Hwang,
Throughput Analysis and Configuration Design of a_ Shared-
Resource Multiprocessor System: PUMPS, 8th Annual
Symposium on Computer Architecture, Minneapolis, Minn.,
May 1981.

LEURK56] Burke, P. J., The Output of a Queueing System
Operation Research, 4, 1956, pp. 699-704.

- 186 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

187

[CHAN81j Chandy, K. H., and C. H. Sauer, Computer Systems
Performance Modeling, Englewood cliffs, N.J.: Prentice-
Hall, Inc., 1S61.

LCHU81j Chu, Yoohan, "Programmin Language and Direct
Execution Computer Architecture", Computer, July 1981.

[COFFSO] Coffman, P. G. and Su Kimming So, On the
Comparison Between Single and Multiple Processor
Elements, IEEE 7th Annual Symposium on Computer
Architecture 1980. pp. 72-79.

[C0TE7&] Cote, W. F., and S. F. Riccelli, The Design of a
Data Driven Processing Element, IEEE Conference on
Parallel Processing 1978, pp. 173-180.

[DAVITSj Davis, A. L., The Architecture and System Method
of DDM1 : A Recursive Structured Data Driven Machine, IEEE
conferencê on Computer Architecture 1978, pp. 210-215*

[DENN78J Denning, P. J., and J. P. Euzen, "The
Operational Analysis of Queueing Network Models",
Ccmputing Surveys, Vol. 10, No. 3, September 1978.

[DENN74J Dennis, J. B., and D. P. Misunas, A Preliminary
Architecture for ja Basic Data Flow Processor, IEEE 2nd
Annual Conference on Computer Architecture, January 1974,
pp. 126-132.

LDENNSOa] Dennis, J. B., et al., Building Blocks for Data
Flow Prototypes, IEEE 7th Annual Symposium on Computer
Architecture, 1980.

[DENN80b] Dennis, J. E., "Data Flow Supercomputers",
Computer, November 1980, pp. 48-56.

[DITZ81j Ditzel, D. R., "Reflections on the High Level
Language Symbol Computer System", Computer, July 1981.

[ENSL74] Enslow, P. H., Multiprocessors and Parallel
Processing. New York: John Wiley d Sons, l"§747

[ENSL77J . "Multiprocessor Organization - A
Survey", ACM Computing Surveys, Vol. 9. No. 1, March
1977, pp. 103-129*

[FENG72] Feng, T., Some Characteristics of
Associative/Parallel Processing, Proceedings of the 1972
Sagamore Comp. Conf., Syracuse University, 1972, pp.
5-16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

168

[FERR78] Ferrari, Domenico, Computer System Performance
Evaluation. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc, 1978.

[FLYN66] Flynn, M. J., Very High Computing Systems,
Proceedings of the IEEE 54, 1966, pp. 1901-1909-

j.FLYN72J Flynn, H. J., "Some Computer Organization and
Their Effectiveness", IEEE Transaction on Computers, Vol.
C21, No. 9» September 1972.

LG0ST79J Gostelow, K. P. and R. E. Thomas, "A View of
Data Flow”, AFIPS, 1979- pp. 629-636.

LHAND77j Handler, W., The Impact of Classification
Schemes on Computer Archidtecture, Proceeding of the 1977
International Conference on Parallel Processing IEEE,
August 1977, pp. 7—15-

[H0BB7O] Hobbs, L. C., and D. J. Theis, editors, Parallel
Processor Systems, Technologies, and Application. New
York: Spartan Books, 1970.

LHUSS70] Husson, S. S., Microprogramming: Principles and
Practice, Englewood Cliffs, N.J.: Prentice-Hall, 1970.

LHWAN79j Hwang, Kai and L. M. Ni, Performance Evaluation
of Resource Optimization of Multiple SIMP Computer
Organizations, IEEE conference on Parallel Processing,
1979, pp. 66-94.

LHVAN81j Hwang, K., and L. M. Ni, "Performance Modeling
of Shared-Resourc Array Processors", IEEE Transaction on
Software Engineering, Vol. SE-7, No 4, July 1981.

[JACK57J Jackson, J. R., Network of Waiting Lines,
Operation Research, 5, 1957, pp. 518-521.

[JOHN80] Johnson, Douglas et al., Automatic Partitioning
of Programs in Multiprocessor System, IEEE Compcon
Spring, 1980.

[KAIN75] Kain, R. Y., and K. V. Sastry, "On the
Performance of Certain Multiprocessor Computer
Organizations", IEEE Transactions on Computers, Vol.
C-24, Ho.11, November 1975.

[KELLSOJ Keller, R. M., et al., Data Flow for Hardware
Design, IEEE Compcon, 1980.

[KLEI75a] Kleinrock, L., Queueing Systems Volume I:
Theory. New York: John Wiley and Sons, 1975.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

189

[KLEI75b] ____________, Queueing Systems Volume II;
Computer Applications. Hew York: John Wiley and Sons,
1975-

LKUMA60] Kumar, E. S., and E. S. Davidson, "Computer
System Design Using a Hierarchical Approach to
Performance Evaluation", Communication of the ACM, Vol.23
H9, September 1980, pp. 511-512.

[LEESO] Lee, Ruby Bei-Loh, Empirical Results on the
Speed, Efficiency, Redundancy ana Quality of Parallel
Computation, Conference on Parallel Processing, 1980, pp.
91- 100.

1.L0UI81 j Louie, Thelma, "Array Processors: A Selected
Bibliography", Computer, September 1981, pp. 53-57.

[MATT79] Mattheyses, R. M., and S.E. Corny, Models for
Specification and Analysis of Parallel Systems,
Proceeding of the Conference on Simulation, Heasurment
and Modelling of Computer Systems, 1978.

i.I'i£HR8Qj Mehra, S. K., et al., "A Comparitive Study of
Some Two-Processor Organization", IEEE Transactions on
Computers, Vol. C-29. Ho.1, January 1980.

|_HICK76J Mick, J. R., Microprogramming Techniques Using
the An2910 Sequencer, San Francisco: Compcon Spring 1978.

LMICK80J Mick, J., and James Brick, Bit-Slice
Microprocessor Design. New York: McGraw-Hill Book
Company, 1980.

i.MISU76] Misunas, D. P., Performance Analysis of a Data-
Flow Processor, IEEE conference on Parallel Processing,
19%, pp. 100-105.

LRAMA80J Ramamoorthy, C. V., and Gary S. Ho, "Performance
Evaluation of Asynchronous Concurrent Systems Using Petri
Nets", IEEE Transactions on Software Engineering, Vol.
SE-6, No. 5» September 1980.

I.RAUS80] Rauscher, T. G., and P. M. Adams,
"Microprogramming: A Tutorial and Survey of Recent
Developments", IEEE Transactions on Computers, Vol. C-29,
No.1, January 1980.

LREDD76] Reddi, S. S., and E. A. Feustel, "A Conceptual
Framework for Computer Architecture", Computing Surveys,
Vol.8, No.2, June 1976, pp. 277-300.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

190

[rEIS80] Reiser, M., and S. S. Lavenberg, "Mean-Value
Analysis of Closed Multichain Queueing Networks", Journal
of the Association for Computing Hacinery, Vol. 27, No.
2, April 1980, pp. 313-323.

[R0BL81] Robledo, C. S., Computer System Performance
Evaluation, Ph.D. Dissertation, Department of Electrical
and Computer Engineering, New Mexico State Uniersity,
Las Cruces, New Mexico 1981.

,
I.RUMB75] Rumbaugh, J., _A Parallel Asynchronous Computer

Architecture for Data Flow Programs, Pn.D. Dissertation,
HIT, 1975-

LRUMB77J __________, "A Data Flow Multiprocessor", IEEE
Transactions on Computers, Vol. C-26, February 1977.

LSAST73J Sastry, K. V., Markovian Models for Performance
Evaluation of Multiprocessor Multimemory Computer System,
Ph.D. Dissertation, University of Minnesota, June 1973.

LSATY80] Satyanarayanan, M., "Multiprocessing: An
Annotated Bibliography", Computer, May 1980, pp. 101-116.

[SAUR75J Sauer, C. H., and K. M. Chandy, "Approximate
Analysis of Central Server Models", IBM Journal Research
and Developments, May 1975•

[SCHR74J Schriber, Thomas J., Simulation Using GPSS. New
York: John Wiley and Sons, 1974•

LSIEG79] Siegel, H. J., "A Model of SIMD Machines and a
Comparison of Various Interconnection Networks", IEEE
Transactions on Computers, Vol. C-28, No. 12, December
1979-

[SPIR79J Spirn, J. R., "Queueing Networks with Random
Selection for Service", IEEE Transactions on Software
Engineering, Vol. SE-5, No. 3, May 1979.

[STONSO] Stone, Harold S. editor, Inroduction to Computer
Architecture. Chicago: Science Research Associates,
Inc., 1980.

LSWAN77J Swan, R. J., et al., Cm*- A Modular Multi-
microprocessor, AFIPS 1977.

[SWAR79] Swartzlander, E. E., "Microprogrammed Control
for Specialized Processor", IEEE Transactions on
Computers, Vol. C-28, No. 12, December 1979.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

191

[VICK80J Vick, C. R., et all, "Adaptable Architecture for
Supercomputers", Computer, November, 1980, pp. 17-35*

[WATS79] Watson, Ian, and John Gurd, A Prototype Bata
Flow Computer with Token Labelling, AFIPS Conference
Proceeding, June 1979, pp. 623-628.

[WHIT75] White, J. A., et al., Analysis of Queueing
Systems. New York: Academic Press Inc, 1975.

[W0NG78] Wong, J. W., "Queueing Network Modeling of
Computer Communication Networks", Computing Surveys, Vol.
10, No. 3, September 1978, pp. 343-351.

i.ZEMA80] Zeman, Jan, and H. T. Nagle, "A High Speed
Microprogrammable Digital Signal Processor Employing
Distributed Arithmetic", IEEE Transactions on Computers,
Vol. C-29, No.2, February 1980, pp. 134-144.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

SOLUTION FOR THE CASE N=3 AND C=3 OF THE
CONTROLLED MULTISERVER MODEL OF CHAPTER V

Let us start witn tne probability state vector,

P.11
P12
P13

21
p22
P23

-1

[■]

-1
-[.j [4]

'21

22

23

31

P32
P33

+ Po *

’pll

+ [L] P12

P13 *

and finally:

P31 1 0 0 -1 l—lCM
(U1

P32 = \ 0 u2 0 P22

P33 0 0 u3 P23

let

0 0

SuDStitute £q 3 into Eq 2 and solving for [P 2i's]

- 192 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

22
23

{ [I] ~ [B]"1 [A]A [y.v f [B]'1 [L]
11

P12

P13

193

- 2 '

How substitute Eq 2' into Eq 1 and solving for [p , l weli s
obtain

P11 ■ / % P
P12 - ([I] - [B]"1 [A] | [i]~[b]-1[a]a c ^ r 1) [B]_1[L]) l p oX P2
P13

. 1) P3
ali tne quantities in Eq 1* are K n o w n except P.. Pluggingo

Eq 1' back into Eq 2' then [P̂ ĵglare solved for also in terms

of PQ.

Finally plugging in for [P „.,]in Eq 5 tnen [p] are2i s 3i s
a g a i n s o l v e d for in t e r m s of P By u sing tne n o r m a l i z i n g

r a t i o in Eq 5-23 P is tnen found. L a s t l y , oy s u b s t i t u t i n go
for P in Eq's 1' ,2', o and 3, the state p r o b a D i l i t i e s are

fo und. Onc e K n o w n , the s t ate p r o b a b i l i t i e s are tnen used to

find tne d i f f e r e n t u t i l i z a t i o n s , i.e. for e a c n PE and for

t he w n o l e s y s t e m . M o r e o v e r tne d i f f e r e n t p a r a m e t e r s liKe

t h r o u g h p u t can be c o m p u t e d .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A p p e n d i x B

THE ANALYTIC PROGRAM FOR THE CONTROLLED
MOLTISERVER MODEL OF CHAPTER V

' j M O t i E L 3 C D 3 ' 7
V M O D E L 3

c m T H I S P R O G R A M I S F O R T H E C O N T R O L L E D M U L T I S E R V E R C A S E
[2 3 ft
[3 3 1 E N T E R T H E H O , O F P E 1 1 S . 1
[4 3 • M = • , < t N (. [|)
C 5 3 ' E N T E R T H E C A P A C I T Y O F T H E S Y S T E M , I , E . T H E Q U E U E L E N G T H '
[6 3 ' P L U S T H E N U M B E R O F S E R V E R S , '
C 7 3 • C = ' „ < , . C H 3 >
[8 3 • E N T E R T H E A R R I V A L R A T E , X f l C T , / U N I T T I M E '
[9 3 1 K = '
[1 0 3 • E N T E R T H E S E R V I C E R A T E F O R E A C H P E , S H O U L D B E O F D I M E N S
[1 1 3 ' U V = '
[1 2 3 U V « - (N f l) f O
[1 3 3 • E N T E R T H E P R O B A B I L I T Y V E C T O R , P V , I T S H O U L D H A V E T H E '
[1 4 3 ' D I M E N S I O N O F N X 1 rW H E R E N I S T H E N U M B E R O F P E • ' S , •
[1 5 3 P - V « . < N , i) f O
[1 6 3 „ P V ^ . < N , l) f . 1 . 1 . 1 . 1 , 1 , 1 . 1 , 1 , 1 , 1
[1 7 3 I f r (N , N > p l , N f O ft G E N E R A T E A N I D E N T I T Y M A T R I X
[1 8 3 U T (- (H , M) / f U V
[1 9 3 U J f l x U T
[2 0 3 T I f (N ji'l) f P V
[2 1 3 A 1 < -) S | T 1
[2 2 3 A * - A 1 + , X U 1
[2 3 3 B K - (N , N) f K , N f O
[2 4 3 B « . D 1 + U 1
[2 5 3 S < - (0 E <) + , X A
[2 6 3 L f - K X I
[2 7 3 T « . < 0 B) + , X L
[2 8 3 W < - < 0 » H , N) f 0 ft I N I T I A L I Z A T I O N O F T H E W A N D P A R R A Y S
[2 9 3 ft
[3 0 3 P M O y W f D f O
[3 1 3 J < - 1
[3 2 3 W < - (1 , N , N) / > < I - S + . X (K X (0 U 1)))
[3 3 3 W S J W < - W , [1 3 C 1 * w) > N) f (I - S + , X (0 W [U 5 5 3) + , X T)
[3 4 3 J
[3 5 3 • > O U T x \ (J > (C - 1))
[3 6 3 ->ws
[3 7 3 O U T * J f . < C ~ l)

[3 8 3 H < - 1
[3 9 3 P- <- (:L») f < < e w [j 5 % : i) + , X (1 3 *) + . x (K x p 1V))
[4 0 3 p s » u <-j - ;L

194 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

las

1:413 P « - P » C i 3 < l » N , i) f ((H W C J J } 3) + . x t + , x p c h j ? 3 >
1 1 4 2 3 H < - H + l
1 1 4 3 3 -> E X I T x \ (O H)
C 4 4 3 -) P S
C 4 5 3 E K I T ; F f . P , C l 3 (1 , » • < „ !) / > (< K X (0 U 1)) + , X P C H J } 3)
C 4 6 3 F T < - 0
1 1 4 7 3 H < - 1 f t C A L C U L f t T I O H O F P <)
C 4 8 3
C 4 9 3 C O M F ' U T : P T f P T + (+ / P [l - l p p 1 3 >
C 5 0 3 H < - H - f l
1 1 5 1 3 4 M W E X \ (H > C)
C 5 2 3 -jCQMF'UT
C 5 3 3 . f O N E J F 0 < - < l - f C L + P T))
C 5 4 3 • P 0 = ' » (f P 0)
C 5 5 3 U T I L . I 2 < - (1 - P O) X 1 0 0
C 5 6 3 * U T X L X Z s ' , (- ^ U T I L I Z)
E 5 7 3 P P < - P X P 0
1 1 5 8 3 ■ T H E S T A T E P R O B A B I L I T I E S A R E 1
C 5 9 3 i p p - i
C 6 0 3 A I S J P P
C 6 1 3 I N O R D E R T O F I N D T H E U T I L I Z A T I O N O F E A C H P E T H E N D O *
C 6 2 3 A P 0 + P 1 1 + P 2 1 + P 3 1 * ♦ ♦ + P N 1 = 1 p T H E N RObI-SUM P I 1 F O R 1 = 1 T O
II6 3 3 n T H E N T H E U T I L I Z A T I O N O F P E 1 = S U M P I 1 F O R A L L I 1 S
II6 4 3 H « - l ft B E G I N * T H E C A L C U L , O F U T I L I 2 , F O R E A C H P E
II6 3 3 A
C 6 6 3 P E « - < 0 * l * l > f 0
C 6 7 3 S U M I J T O T 4- (+ / P F ' C ? H J 1 3)
C 6 8 3 ■f ' , <fH) , ' P E = 1 , (k - T O T)
C 6 9 3 P E < - F E , C 1 3 < l » l » l) f T O T
C 7 0 3 H < - H + l
1 1 7 1 3 O l < X \ (H > N)
L 7 2 3 ~) S U M I
C 7 3 3 O K * ' P E =: 1 n E N D * T H E C A L C U L , O F U T I L I Z , F O R E A C H P E
1 1 7 4 3 A
[1 7 5 3 A PE
1 1 7 6 3 I < - 1 B E G I N * C A L C U L A T I O N O F T H E E X P E C T E D N O I N T H E S Y

' 1 . 1 7 7 3 A
1 1 7 8 3 T E M P < - 0
C 7 9 3 N O I N ♦ T E M F > T E M P + (I X (+ / t S } P P | I I P P 1 3))
1 1 8 0 3 I P I *4* 1
118 III ~ > O U T L X \ (I > C)
L823 • 4 N O I N ft E N D * C A L C U L , O F T H E E X P E C T E D N O I N T H E S Y S T E M
C 3 3 3 A
C343 O U T L ♦ 1 E X P E C T E D N O I N T H E S Y S T E M = ' , (T T E M P) , ' T R A M S A C
1 1 8 5 3 n C A L C U L A T I O N T H E A V E R A G E N O I N Q U E U E
LI 86 3 n
1 1 8 7 3 N O I N G U E < - 0
II33 3 i <-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

196

INSTRUCTIONS'

ZS91 « U E * H O I H B U E f . » O I H Q U E + ((I - J) X (+ / P P | ; i y 5 1 !]))
C 9 0 3 I « - I + 1
C 9 1 3 - » O U E O U T x i < I > C)
C 9 2 3 - > a » J E
C 9 3 3 o u e o u t j ' a v g , n o i n q u e u e = > , (y n o i n q u e) ,
C 9 4 3 fl C A L C U L A T I O N T H E A V Q , R E S P O N S E T I M E
C 9 5 3 n -
C 9 6 3 P R O B F U L f . (+ / P P C C j ; i 3)
[9 7 3 F f E 5 P T I M E f (T E M P . r (K X < J - P R O B F U L)))
C 9 8 3 ' A V G , R E S P O N S E T I M E a 1 , (f R E S P T I M E) , ' T I M E U N I T '
C 9 9 3 fl C A L C U L A T I O N T H E A V G . T I M E I N T H E Q U E U E
C l 0 0 3 fl -
C 1 0 1 3 G U E T I M E f . < N O I N Q U E — (K X (1 — P R Q B F U L)))
C l 0 2 3 ’ A V G . T I M E I N Q U E U E a 1 y(f Q U E T I M E)f ' T I M E U N I T *
C l 0 3 3 fl S Y S T E M T H R O U G H P U T
C1043 fl ------------------------
C 1 0 5 3 T H R O U f (U T I L I E ^ - 1 0 0) x < < + / U V £ J 1 3))
C 1 0 6 3 ' S Y S T E M T H R O U G H P U T = ' , (t T H F : Q U) , ' I N S T R / T I M E U N I T '
C 1 0 7 3 ' S Y S T E M U T I L I S A T I O N = ■ , < y U T I L I E) , ' o / o '
C 1 0 8 3 ' A R R I V A L R A T E a ' » < • » • «) » ' I N S T R U C T I O N / T I M E U N I T '
C 1 0 9 3 ' S E R V I C E R A T E V E C T , a '
C l 1 0 3 ») U V
C l 1 1 3 ' P R O B . S E L C T I O N V E C T , a '
C 1 1 2 3 i 5 P V
C 1 1 3 3 ' N O O F P E " S a ' , < r N) ,

<7

yANH SYSTEM CAPACITY ' V < 1f C)

VMOIIEL2C03V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

THE SIMULATION PROGRAM FOR THE CONTROLLED
MULTISERVER MODEL OF CHAPTER V

SIMULATE

MODEL31
THIS PROGRAM SIMULATES THE EXECUTION OF INSTRUCTIONS
ON THE CONTROLLRDD MULTI-SEVER MACHINE AS HELL AS JOB •
ARRIVALS. IN THIS PART (I) HE ASSUME THAT
THE NUMBER OF PROGRAMS (JOBS) IN THE MAIN MEMORY TO BE
FIXED AND GIVEN BY THE 1ST SEGMENT OF THE PROGRAM

RMULT 111,333.555,777
• FUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1,C24 EXPONENTIAL DISTRIBUTION

0.0/.1 ,.104/.2,.222/.3,.355/.4 ,.509/.5,.69/.6,.915/.7,1 .2/.75,1 .38
.8,1 .6/.84,1 .83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8•
PENO FUNCTION RN1,D9 FOR THE PE NUMBER TO BE ALLOCATED.

0,0/. 04,3/.09,4/.15 ,5/.25,6/.4,7/.55,8/.75,9/1., 10 •
• THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
• SELECTING THE NEXT PE TYPE, I.E. THE PROB. OF SELECTING
• PE MO 1 IS OS, THE PROBABILITY OF SELECTING PE NO 3 IS 4J,
• AND THE PROBABILITY OF SELECTING PE NC 4 IS 5* ... ETC.t
PESER FUNCTION

0,75/1.,1353
•
CUSER FUNCTION

0 ,180/1 .,220 •
INSTR FUNCTION

0,50/1.,70 »
ENTRY VARIABLE
SUM VARIABLE

INITIAL
CUPE EQU•

STORAGE

- 197 -

RN4,C2 FOR THE PE SEVICE TIME ASSIGNMENT

NOTE THAT EVERY PE HILL HAVE
DIFFRENT SERVICE TIME.

RN1.C2 FOR THE CONTROLLER SERVICE TIME

ASSIGNMENT.
RN2,C2 FOR THE ASSIGNMENT OF THE NUMBER OF

INSTTRUCTIONS.
Q4RDY
FN*PESER+FN$CUSER
X4 I N S T ,0 INITIALIZATION OF THE NUMBER OF ISTRU-
50 ,F

CTIONS IN EACH JOB .
S4CPU.10 SPECIFY THE NUMBER OF PE'S IN THE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

198

• SEGMENT 1 (ASSOCIATED WITH THE NUMBER OF JOBS IN THE
* SYSTEM.)
JOBS GENERATE ,,,5 JOB ARRIVAL

QUEUE MEM
GATE LR SYS THIS WILL MAKE SURE THAT ONLY ONE JOB IS
LOGIC S SYS ACTIVE AT ANY GIVEN TIME
DEPART MEM
SAVE VALUE INST,FN$INSTR ASSIGNMENT OF THE NUMBER

• OF INSTRUCTIONS.
TERMINATE 1

» SEGMENT 2

ARIVE GENERATE 200,FN$XPDIS GENERATE THE MACRO INSTRUCTIONS
ENTER SYSTM
QUEUE DUMMY

CAPCY TEST L VJENTRY,10
DEPART DUMMY
ASSIGN 1 ,FN$CUSSR PARAMETERS ASSIGNMENTS FOR CU
ASSIGN 2 ,FN$PESER AND PE SERVICE TIMES.
ASSIGN 3,VJSUM THE COMBINED PE AND CU SERVICE TIME
ASSIGN 4.FNJPEN0 ASSIGN THE PE NUMBER TO THE
QUEUE RDY INSTRUCTION.

i GATE LR NEXT
* LOGIC S NEXT

GATE NU CUPE
SEIZE CUPE

* DEPART RDY
i ADVANCE P1 ,FN»XPDIS

SEIZE PA
DEPART RDY
ADVANCE P3,FN*XPDIS
SAVEVALUE INST-, 1
TEST LE XAINST,0,OUT
LOGIC R SYS

•OUT LOGIC R NEXT
OUT RELEASE CUPE

RELEASE PA
LEAVE SYSTM

G
TERMINATE

» THE TIMER

• GENERATE 50000
»
i

TERMINATE 1

t THE CONTROL CARDS

§ START 5

RMULT
CLEAR

1 1 1 ,333,555,777

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

199

•CAPCY TEST L
PENO FUNCTION

0,1/1. ,16
START•
RMULT
CLEAR

•CAPCY TEST L
PENO FUNCTION

0 ,1/1 .,21
START»
RMULT
CLEAR

•CAPCY TEST L
PENO FUNCTION

0,1/1.,26
START
END

V$ENTRY,10
RN1 ,C2
5
II 1 ,333,555,777
V$ENTRY,15
RN1,C2
5
III ,333,555,777
V$ENTRY,20
RN1 ,C2
5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

200

SIMULATE

MODEL33
THIS PROGRAM SIMULATES THE EXECUTION OF INSTRUCTIONS
ON THE CONTROLLRDD MULTI-SEVER MACHINE AS NELL AS JOB
ARRIVALS. IN THIS CONFIGURATION (III) WE ASSUME THAT
THE NUMBER OF PROGRAMS (JOBS) IN THE MAIN KEMORT TO BE
FIXED AND GIVEN BY THE 1ST SEGMENT OF THE PROGRAM
THE CU AND THE SPE SERVICE TIMES ARE SEPARATE.
THE MODIFICATION MADE IN THIS CASE IS THAT THE CU CAN
SERVE MORE THAN ONE INSTRUCTION AT ANT GIVEN TIME

RMULT 111,333,555,777
» FUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1.C24 EXPONENTIAL DISTRIBUTION

0,0/. 1 ,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.9 15/.7,1 .2/.75,1 .38
.8,1 .6/.84,1 .83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

t
PENO FUNCTION RN1,C2 FOR THE PE NUMBER TO BE ALLOCATED.0,1/1. ,6

*0,0/.04,3/.09,4/.15,5/.25,6/.4,7/.55,8/.75,9/1.,10
t
t
•
*
»
*

THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
SELECTING THE NEXT PE TYPE, I.E. THE PROB. OF SELECTING
PE NO 1 IS OS, THE PROBABILITY OF SELECTING PE NO 3 IS 4*, AND
THE PROBABILITY OF SELECTING PE NO 4 IS 5* ... ETC.

PESER FUNCTION
0,75/1 .,135

*
CUSER FUNCTION 0,180/1.,220
INSTR FUNCTION

0,50/1 .,70 •
ENTRY VARIABLE
SUM VARIABLE

INITIAL
INITIAL
INITIAL

CUNT EQU
STORAGE•

t i »

RN4,C2 FOR THE PE SEVICE TIME ASSIGNMENT

NOTE THAT EVERY PE WILL HAVE
ITS OWN SERVICE TIME.

RN1.C2 FOR THE CONTR. SERVICE TIME ASSIGNMENT.

RN2.C2 FOR THE ASSIGNMENT OF THE NUMBER OF

INSTRUCTIONS.
QARDY
FN*PESER+FN*CUSER
XS INST,0/X$CPUS,0
XSCNTK,0/X$CHCK,0
X $ N E W ,O / X S L A S T ,0
50,F
S$ C P U , 10

INITIALIZATION OF THE
NUMBER OF INSTRUCTIONS AND
THE NUMBER OFPE'S IN THE
SYSTEM.
SPECIFY THE NUMBER OF PE'S
.. THE SYSTEM.

SEGMENT 1

ARIVE GENERATE
QUEUE
GATE LR
LOGIC S

(ASSOCIATED WITH THE JOBS IN THE SYSTEM.)

JOB ARRIVAL,,,5
MEM
SYS
SYS

THIS WILL MAKE SURE THAT ONLY ONE JOB
IS ACTIVE.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20 1

DEPART MEM
SAVEVALDE INST .FNAINSTR ASSIGNMENT OF THE NUMBER
SAVEVALUE CHCK,X$INST INSTRUCTIONS.

9 TERMINATE 1

1
9 SEGMENT 2

GENERATE 150 .FNAXPDIS GENERATE THE MACRO INSTRUCTIONS
QUEUE DUMMY IS A CONCEPTUAL QUEUE

CAPAC TEST L VJENTRY,30 TESTING FOR THE SYSTEM CAPACITY
* THE QUEUE LENGTH +SYSTEM CAPACITY

ENTER SYSTM
DEPART DUMMY
ASSIGN 1.FNACUSER THE CONTROLLER SERVICE TIME
ASSIGN 2.FNAPESER AND PE SERVICE TIMES.
ASSIGN 3,7 $SUM THE COMBINED PE AND CU SERVICE TIME
ASSIGN 4 ,FN$ PENO ASSIGN THE PE NUMBER TO THE
QUEUE RDY INSTRUCTIONS.
SAVEVALUE LAST,P4
SEIZE CUNT
DEPART RDY
ADVANCE PI ,FN$XPDIS

• TEST NE XSNEW, XI LA ST SINCE EACH PE DOES NOT HAVE ITS OWN
* SAVEVALHE NEW,X$LAST QUEUE, THEN IT IS NECESSARY TO CHECK

GATE NU P4
RELEASE CUNT FOR THE IDLE STATE OF THE PE.
SEIZE P4
ADVANCE P2.FNJXPDIS
RELEASE P4
SAVEVALUE INST-,1
TEST G XAINST ,0 ,TERM
LEAVE SYSTM
TRANSFER .DONE

TERM LOGIC R SYS
DONE§ TERMINATE

* GENERATE 50000
•
9 TERMINATE 1

START 1, N P
9 RESET

ARIVE GENERATE ,,,5
START 5

RMULT 111 ,333,555,777
CLEAR

PENO FUNCTION RN1 ,C2
0,1/1. ,11
■ START 5

RMULT 111 ,333,555,777

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

202

CLEAR
•CAPAC TEST L
PENO FUNCTION
0,1/1., 16

START
*

RMULT
CLEAR

•CAPAC TEST L
PENO FUNCTION

0 ,1/ 1 . , 2 1
START

»
RMULT
CLEAR

•CAPAC TEST L
PENO FUNCTION
0,1/1.,26

START»
RMULT
CLEAR

•CAPAC TEST L
PENO FUNCTION
0,1/1.,31

START
END

V$ENTRY, 1l»
RN1,C2
5
11 1 ,333,555,777
V$ENTRY,18
RN1,C2
5
11 1 ,333,555,777
V$ENTRY,20
RN1,C2
5
11 1 ,333,555,777
V$ENTRY,30
RN1,C2
5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix D

THE ANALYTIC PROGRAM FOR THE ARRAY PROCESSING
MODEL OF CHAPTER VI

V MODEL. 2 cm 0***4
C 2] A T H I S P R O G R A M R E P R E S E N T S T H E A N A L Y T I C S O L U T I O N FOP. A H S I M D M O D E L
C3] A --.------------
C4] ' E N T E R T H E N O O F P R O C E S S I N G E L E M E N T S , IT S H O U L D B E '
C5] ' G R E A T E R T H A N 3,'
Co] 'M*' »(*««■□>
C73 ' E N T E R T H E S T S T E M C A P A C ITY , I . E . Q U E U E L E N G T H + S E R V E R '
CS] 'C = ' , (fCFP)
C?3 ' E N T E R T H E A R R I V A L RATE'
C 1 0 3 ' '<= ' « (r KPQ) n U O P S P E R U N I T T I M E
Cll] ' E NTER T H E S E R V I C E RATE'
C12] 'U=I , (T U H Q > f) J O B S P E R U N I T T I M E
C 1 3 3 K K p K i U
C 1 4] ' E N T E R P V • T H E P R O B A B I L I T Y V E C T O R , I T S H O U L D H A V E T H E L E N G T H O F M '
C 1 5 3 'THE P R O B A B I L I T Y O F T H E J O B S E L E C T I N G A C E R T A I N NO. O F P E ' ' S . '
C 1 6 3 A P V L (N , l) r a
C 173 0 0 0 . 0 4 0 . 0 S 0 . 0 6 0.1 0 . 1 5 0 . 1 5 0 . 2 0 . 2 5
C IS]
Cl?] B p (N , H) p < K + U) , N f 0
C 203 'THE B M A T R I N 3 ■C21] a s
C22] T l M < N , N) f P V
C233 «H-«|Ti
C 24] 'THE Al M O T R I N =•
C253 s «1
C263 o p u x A i
C273 Lt-Kxi
C2S3 w «-(0,n ,h)t o ^ i n i t i a l i s a t i o n o f t h e w a n d p a r r a y s

C30] p p (0 , n , 1) p o
C31] =<-l
C323 e p c-4
C333
C34] T P O B J + .XL
C353 : ! M - s x K K a B E G i n ; c a l c u l a t i o n o f u a r r a y
C362 a ---
C37] Y H l - (S + . x (a «) + . X T)
C38] C 1 3 < l > M , N) p (i - s + , x (0Y) +, xT)
C392 c o n t i n u e :w r w ,c i] < i ,n ,n)/'< i-s+.x(QWC::} f]) + . xT)

- 203 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20 4

11403 e*.e~i
C413 s<-2+l
C423 ■iF'SX I <E<.0) REND* CALC, OF W ARRAY
C433 ft ---------------------
C443 -jCOHTIMUE
C453 PSJJ<-(C-3) flBEGINJ CflLC, OF F ARRAY
C463 n ------------------------C473 n mote that all the elements of the r vector are in terms of p<>
11483 Ht-i
C493 !*«■•*» C13 < 1 »n , i < (HWC-Jf J 3) + , xt+4xpv)
C503 back <<0W C (J - D J J]) + *xt+,xpch; 53)
C513
C523 h<.h+i
C533 ->o u tx\ (Jli)
C543 ->BACK
C553 o u t{-»e::itx \ (N<,3) n this statement should never be executed
11563 fi SINCE N IS) 3
C573 F<-F-7C13Cl»M»l)f(< S T) + . x t + , x R | : < c - 3) 5 53)
C583 P<-F>Ci3<l>N»l)P (<0«) + . x t + , x P | ; (C - 2) i } 3)
11593 F<-F>C13<l»Nrl)f (KKxFC(O-i); 53)
C603 EXIT* 'THE FOLLOWING ARE IN TERMS OF F‘0 ' ft END t CALC. OF P ARRAYV611 r ---------------------
1162 3 R 6JF'
C633 H * - 0 ft b e g i n ; c o m p u t e p o
C643 n -----------------
C653 pt«-0
11663 suM;H<-H+i
II673 f-t<-pt+(+/p |:h ;;i])
C683 ->RESULTX \ (Hf>C)
C693 •♦sum
C703 result;P0*<1* <1+p t))
C713 ’PO = 1 flEND* COMPUTE PO
II72 3 ft------------------------
C733 PO
C743 utiliz*.(i-p o)x100
L'753 THROUf(UTILI2xU)ii00C763 'THE FINAL PROBABILITIES ARE * •
C 773 'pp = pxpo = '
C 78 3 ppppxpo
C793 ft C?pp
i:803 1 '
C813 ft CALCULATION OF THE TOTAL CPU UTILIZATION
IT823 ‘Jf-1
C833 UTiPO
C843 repeat ; UTifUTi+ (Ux (+ / P P C 5>J 5 :L3))
CSS 3 J+-J+1
i:.863 -iStopx i(J>H)
C873 -> REPEAT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

205

C 3 8 3 s t o p :u t x l x «-<u t x * n) x 100
C S 9 3 P E * . < o » M) f O a b e g i n ; c a l c u l , t h e u t i l i z a t i o n o f a c e r t a i n

C 913 A N U M B E R o r P E ' S
c ?2: a------------------------------ --------------------
C9 3 3 H4-1
C943 s u m x :t o t +.<+/p p C 5 h *13) a s u m m a t i o n o f p i x + f 2 X + p 3 x + . ♦ ,+p n x f o r a l .l i *s
C 9 S 3 A 'P'f(T H) , ' P E ' ,• = »,<fTOT)
C9 6 3 PE«-PEf D f T O T
C9 7 3 -*DOMExi(H±N>
C 9 3 3 h*-h+i
C 7 9 3 ->s u m i
C 1 0 0 J O O N E j ' P E C i n R E P R E S E N T S T H E P R O P . O F 1 P E B E I N G U T I L I S E D ; 1
C 1 0 1 3 ' p E C 2 3 R E P R E S E N T S T H E P R O B , O F 2 R E * 'S B E I N G U T I L I Z E D , E TC**
C 1 0 2 3 'RE = *
C 1 0 3 3 R E
C 1 0 4 3 A ENDJ T H E C A L C U L A T I O N O F T H E U T I L I S A T I O N O F P E ' S

L 1 G 6 J If*l A B E G I N ; c a l c u l a t i o n o f t h e E F F E C T E D m o i n t h e STST, A N D i n t h e G U E

Cl 0 8 3 e :j p e c *-o
C 1 0 9 3 G U E L E N4.Q
C l l O J e c u s t : e x p e c f e n p e c + < x x < + / p f c x ;)
Cl 113 GUELEH#.OUELEN+(< I - 1) X <T / P P C * 5 ?13))
C 1 1 2 3 H - x+1
C 1 1 3 3 -*o u t c x \ (i > c)
C 1 1 4 3 -fSCUST A e n d ; C A L C U L A , o f T H E E X P E C T E D M O O F T R A N S A C , IN T H E SYST,
C 1 1 3 3 a--------- ------------------------------------- ---
C 1 1 6 3 O U T C ;'T H E E X P E C T E D M O IN T H E S Y S T E M 3 ',<* E X P E C),• T R A N S A C T I O N S '
C 1 1 7 3 'THE AVO, Q U E U E L E N G T H • , » 3 ' , < * Q U E L E M) , • T R A N S A C T I O N S '
C 1 1 9 3 A O U E L E N s N Q
C 1 1 9 3 w a i t <-+/p p c c ; ?13
C 1 2 0 3 WAXT4-1-WAXT
C 1 2 1 3 T W A Z T f (1 -fdUELEM) -f (K ftWAIT)
C 1 2 2 1 ' A V E R A G E J O B R E S P O N S E T I M E s ' , (f T W A I T) f ' T I M E U N ITS'
C 1 2 3 3 ' S Y S T E M U T I L I Z A T I O N 3 * , < t U T I L I Z)
C 1 2 4 3 - C P U ' ' S U T I L I Z A T I O N a ' f < t U T I L 1)
C 1 2 5 3 ' S Y S T E M T H R O U G H P U T a ' , < T T H R O U)
C 1 2 6 D ' A R R I V A L R A T E a '*<**)?' J O B S / T I M E UNIT'
C 1 2 7 3 ' S E R V I C E R A T E a ‘ ,(^U),» J O B S / T I M E U N X T '
C 1 2 8 2 'P R O B % A L L O C A T I O N V E C T . a •
C 1 2 9 3 O P V
C 1 3 0 3 ' N U M B E R O F P R O C E S S O R S a ' A N D S Y S T E M C A P A C I T Y a ',(«*C>

■7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix B

THE SIMULATION PROGRAMS FOR BOTH ARRAY MODELS OF
CHAPTER VI

SIMULATE

MODEL2A (RUN #1 C=5))=.7
MACROANALYSIS OF THE ARRAY SYSTEM
THIS PROGRAM SIMULATES THE EXECUTION OF JOBS
ON THE ARRAY MACHINE .IT IS THE SIMULATION VERSION OF
THE ANALYTIC CASE.

RMULT 11,33,55,77
• FUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1.C24 EXPONENTIAL DISTRIBUTION

0.0/.1,.104/.2,.222/.3,.355/.*,.509/.5,.69/.6,.915/.7,1 .2/.75,1 .38
.8,1 .6/.84,1 .83/.88,2.12/.9 ,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/-998,6.2/.999,7/.9998,8»
NOPES FUNCTION RN1.D9 FOR THE NUMBER OF P E ’S TO BE ALLOCATED.

0,0/.04,3/. 09,4/.15 ,5/.25,6/.4 ,7/.55,8/.75,9/1., 10•
• THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
• ALLOCATING THE NEXT GROUP OF PE'S, I.E. THE PROB. OF
• allocating 1 PE IS OJ, THE PROBABILITY OF ALLOCATING 3 P E ’S
• is 4 J, andTHE PROBABILITY OF ALLOCATING 4 P E ’S IS 5J...ETC.•
PESER FUNCTION RN4,C2 FOR THE PE SEVICE TIME ASSIGNMENT

0,70/1.,135
• NOTE THAT ALL THE PE S WILL HAVE
• THE SAME SERVICE TIMET
CUSER FUNCTION RN1,C2 FOR THE CONTLR. SERVICE TIME ASSIGN.

0 ,1 8 0/ 1 . , 2 2 0•
• VARIABLE SPECIFICATIONi
ENTRY VARIABLE
EXPEC FVARIABLE

•
THROU FVARIABLE
THROS FVARIABLE

INITIAL

- 206 -

QSMAIN
(7*(STiSYSTM)) EXPECTED NUMBER IN THE SYSTEM

EQUALS THE ARRIVAL RATE X AVG.
TIME EACH XACT STAYS IN THE
SYSTEM. DEVIDE THE RESULT BY
1000 FOR WE MULTIPLIED BY 1000.

(SR$CPU»(SC4CPU/ST$CPU))
(SR$SYSTM»(SC$SYSTM/ST$SYSTM))•100
X4CPUS,0 INITIALIZATION OF THE NUMBER

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

207

OF PE'S ALLOCATED
TO EACH JOB.

CAPCY VARIABLE (X4SYCAP)
STORAGE S$CPU,10 SPECIFY THE NUMBER OF* THE SYSTEM.■ THE MAIN PROGRAM

SET GENERATE 14(FNSXPDIS GENERATE THE JOB ARRIVAL
ENTER SYSTM

KEY3 SAVEVALUE SYCAP.4
TEST L V4ENTRY,V$CAPCY,OUT
QUEOE MAIN
GATE LR SYS
LOGIC S SYS
ASSIGN 1 .FN4CUSER PARAMETERS ASSIGNMENTS F O R .
ASSIGN 2.FN4PESER AND PE SERVICE TIMES.
ASSIGN 3+.P1
ASSIGN 3+.P2
SAVEVALtJE CPUS.FN4NOPES
SEIZE CUPE SEIZE THE CONTROLLER
ENTER CPU.XJCPUS
DEPART MAIN
ADVANCE 20.FN4XPDIS
LEAVE CPU.XtCPUS• ADVANCE PI ,FN»XPDIS CONT. SERVICE TIME

t ENTER CPU,X$CPUS SEIZE THE SPECIFIED NO. OF• ADVANCE P2
t LEAVE CPU,X*CPUS

RELEASE CUPE
LOGIC R SYS
LEAVE SYSTM
SAVEVALUE THRPT,VJTHROU
SAVEVALUE THRPS.VSTHROS -
SAVEVALUE XACNO,VJEXPEC
TERMINATE 1

OUT TERMINATE

THE TIMER SEGMENT

GENERATE 500
TERMINATE 1

THE CONTROL CARDS

START 60 ,N?
RESET

• START 60

RMULT 11,33,55,77
CLEAR

•EXPEC FVARIABLE (3* (ST4SYSTM))
•KEY GENERATE 33.FN4XPDIS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

208

•KEY3 SAVEVALUE SYCAP,5
STORAGE S$C?U,5

HOPES FBHCTIOH RH1,D5
0,0/.1 ,2/.3,3/.6, 4/1. ,5
« START 60

RM0LT
CLEAR

11 ,33,55,77

•EXPEC FVARIABLE (4*(STSSYSTM))
•KEY GEHERATE 25 ,FN$XPDIS
•KEY3 SAVEVALUE SYCAP,6

STORAGE s$c?u,a
HOPES FUHCTIOH RH1,07

0,0/ .05,3/ . 1 ,4/.25,5/.4,6/.6,7/1
• START 60

RHULT
CLEAR

11,33,55,77

•EXPEC FVARIABLE (5*(STSSYSTH))
•KEY GEHERATE 20,FH$XPDIS
•KEY3 SAVEVALUE SYCAP,8

STORAGE S4CPU,12
HOPES FUHCTIOH R H 1 ,D 9
0,0/.02,5/.06,6/. 1,7/.2,8/.3,9/.'
■ START 60

RMULT
CLEAR

11,33,55,77

•EXPEC FVARIABLE (7*(STSSYSTM)}
•KEY GEHERATE 14,FK*XPDIS
•KEY3 SAVEVALUE SYCAP,29

STORAGE SSCPU,15
HOPES FUHCTIOH RH1,D11

0,0/.04,6/ . 1,7/ • 15,8/.2,9/.25,10,
t START 60

RHULT
CLEAR

11,33,55,77

STORAGE S$CPU,20
HOPES FUHCTIOH RH1,011

0,0/.04,11/.1,12/ .15,13/.2,14/.2!
START
EHD

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

209

SIMULATE•••«•••t•••••••••••!t•••••!•••••••••«•»••••••!••*•!•!••••••
THE MICRO-ANALYSIS OF THE ARRAY SYSTEM
C=5 AND VARY)
THIS PROGRAM SIMULATES THE EXECUTION OF INSTRUCTIONS
ON THE ARRAY MACHINE AS HELL AS JOB ARRIVALS. HE ASSUME
THE NUMBER OF PROGRAMS (JOBS) IN THE MAIN MEMORY TO BE
FIXED AND GIVEN BY THE 1ST SEGMENT OF THE PROGRAM

RMULT 11,33,55,77
• FUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1.C2K EXPONENTIAL DISTRIBUTION

0.0/.1 ,.10K/.2,.222/.3,.355/.K,.509/.5,.69/.6,.915/.7,1 .2/.75.1 .38
.8,1.6/.8K,1 .83/.88,2.12/.9 ,2.3/. 92,2.52/.94,2.81/.95,2.99/.96,3.2
•97,3.5/.98,3.9/.99,1.6/.995,5.3/.998,6.2/.999,7/.9998,8

NOPES FUNCTION RN1.D9 FOR THE NUMBER OF PE'S TO BE ALLOCATED.
0,0/.OK, 3/.09,K / . 15,5/.25,6/.K,7/.55,8/.75,9/1., 10
«
» THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
• ALLOCATING THE NEXT GROUP OF P E ’S, I.E. THE PROB. OF
• ALLOCATING 1 PE IS OJ, THE PROBABILITY OF ALLOCATING 3
• PE's IS K*. AND THE PROBABILITY OF ALLOCATING K P E ’S IS
» 5% . . . ETC.•
PESER FUNCTION

0,75/1.,135

CUSER FUNCTION
0,180/1.,220
INSTR FUNCTION

0,50/1.,70 •
ENTRY VARIABLE
EXPEC FVARIABLE

*

EXINS FVARIABLE
THROU FVARIABLE

INITIAL

STORAGE

• SEGMENT 1
«

GENERATE
QUEUE

RNK.C2 FOR THE PE SEVICE TIME ASSIGNMENT

NOTE THAT ALL THE PE S HILL HAVE
THE SAME SERVICE TIMET

RN1.C2 FOR THE CONTLR. SERVICE TIME ASSIGN.

RN2.C2 FOR THE ASSIGNMENT OF THE NUMBER OF

INSTRUCTIONS TO THE JOB.
Q4RDY
(3»(FT4CUPE)) EXPECTED NUMBER IN THE SYSTEM

EQUALS THE ARRIVAL RATE X AVG.
TIME EACH XACT STAYS IN THE
SYSTEM. DEVIDE THE RESULT BY
1000 FOR WE MULTIPLIED BY 1000.

(3*(ST4SYSTM))
(SR$CPU*(SC4CPU/ST$CPU))*100
X$INST,0/X$CPUS,0 INITIALIZATION OF THE NUMBER

OF INSTRUCTIONS IN EACH JOB
AND NUMBER OF PE'S ALLOCATED
TO EACH ONE.

S4CPU.10 SPECIFY THE NUMBER OF P E ’S IN
TH SYSTEM.

(ASSOCIATED WITH THE JOBS IN THE SYSTEM.)

,,,5 JOB ARRIVAL
MEM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

210

G 7E LB SYS THIS GUARANTEES THAT ONLY ONE JOB
LOGIC S SYS IS ACTIVE.
DEPART MEM
SAVEVALUE INST ,FN$INSTR

• SAVEVALUE CPUS, FNSNOPES

9 TERMINATE 1

•
9 SEGMENT 2

KEY GENERATE 3 33.FNSXPDIS
ENTER SYSTM
QUEUE DUMMY

KEY2 TEST L VJENTRY,15
DEPART DUMMY
ASSIGH 1 ,FN$CUSER
ASSIGN 2.FNSPSSER
QUEUE RDY
GATE LR NEXT
LOGIC S NEXT
SEIZE CUPE
DEPART RDY
ADVANCE P 1, FNSXPDIS
RELEASE CUPE
ENTER CPU.XSCPUS
ADVANCE P2
LEAVE CPU.XJCPUS
SAVEVALUE INST-,1
TEST LE XSINST.O.OUT
LOGIC R SYS

OUT LOGIC R NEXT
LEAVE SYSTM
SAVEVALUE THRPT ,V$THROU
SAVEVALUE XACNO,V$EXPEC

9 TERMINATE
9
9 THE TIMER SEGMENT

9 GENERATE 10000
•
9 TERMINATE 1

9
9 THE CONTROL CARDS
9 START 5 ,NP
9 RESET
9 START 5

RMULT
CLEAR

11,33,55,77

•KEY2 TEST L VSENTRY,7
EXPEC FVARIABLE H»(FT*CUPE)
EXINS FVARIABLE 4*(STISYSTM)

ASSIGNMENT OF THE NUMBER OF
INSTRUCTIONS AND THE NUMBER OF
PE’S TO THE JOB.

GENERATE THE MACRO INSTRUCTIONS

PARAMETERS ASSIGNMENTS FOR-CU
AND PE SERVICE TIMES.

SEIZE THE CONTROLLER

CONT. SERVICE TIME

SEIZE THE SPECIFIED NO. OF PE'S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

211

K E Y G E N E R A T E 2 5 0 , F N $ X P D I S
S T A R T 5

R M U L T
C L E A R

11 , 3 3 , 5 5 , 7 7

E X P E C F V A R I A B L E r*jt f»f> \3- vr H b U C /
E X I N S F V A R I A B L E 5 * (ST $ S Y S T M)
K E Y G E N E R A T E 2 0 O fF N $ X P D I S

S T A R T 5

R M U L T
C L E A R

1 1 , 3 3 , 5 5 , 7 7

E X P E C F V A R I A B L E 6 * (F T $ C U P E)
E X I N S F V A R I A B L E b * (S T $ S Y S T M)
K E Y G E N E R A T E 1 6 6 , F N $ X P D I S

S T A R T 5

R M U L T
C L E A R

11 , 3 3 , 5 5 , 7 7

E X P E C F V A R I A B L E 7 * (F T $ C U P E)
E X I N S F V A R I A B L E 7 * (S T $ C U P E)
K E Y G E N E R A T E 1 5 3 , F N $ X P D I S

S T A R T

E N D

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix F

THE ANALYTIC PROGRAM FOR THE DATA FLOW MODEL OF
CHAPTER VII

c m
C23
C33
C43
C53
C63
C73
C83
C93
c io :c i m
C123
1:133
C143
C153
C .163
C173
C183
C193
C203
C213
C223
II23 3
C243
1125 3
C263
C273
C283
C293
1130 3
C313
C323
II33 3
C343
C353
C363
C373
C383
11393
C403

O N L Y T O W D E C I M A L . P L A C E S

f l S E R V X C E T I M E F O R D F J .

S E R V I C E T I M E F O R : D F 2

S E R V I C E T I M E F O R D F 3
(T H E A R R I V A L R A T E) '
A R I V A L R A T E

, H O , O F P E ' ' S 1

l< (T H E S Y S T E M C A P A C I T Y) I T M U S T B E G R E A T E R T H A N
A S Y S T E M C A P A C I T Y , K M U S T B E G R E A T E R T H A W N

P R O B , I H S T ,P ' T H E B E I N G R E A D Y

t D F L O W

□ F'F'M ft
' U1 = 1
(T ^ l F O)
• U2 = 1
< * U 2 H 1> ft
' U 3 = •
(r U 3 < - Q) a
' E N T E R Y 3
<t '»3<-D> ft
' E N T E R M ,
N < - 0
' E N T E R

' E N T E R

• E N T E R G ' n T H E P R O B , I N S T , B E I N G C O M P L E T E D A N D G E T O U T
(t Q f D)
t i <-U3x p
Y 2 F N X U 1

n T O G E T A F E E L I N G F O R D F 1 , D F 2 »
A Q U E U E I N G M O D E L O F C H A P T E R V ,

• F O R D F 3 • , • U 3 = • , (r U 3) , • A N D Y 3

L < “ 1
' - ■ • 3 ' - < - (O f l > l) r o
T E M P f ((U 2 + Y 3) ^ . (U 3 X (P + G)))
P 0 3 < - < l - T E M P) - (! - (T E M P * (K + ;l)))

B A C K 3 J A P 3 L < - (P 0 3) X (T E M P * L)
L - J - L + ̂
P 3 L « . P 3 L , C l 3 (1 , 1 , 1) f A P 3 L
• + O U T 3 X \ (L > K)
- > B A C I < 3

O U T 3 « 1 T H E A B O V E P 3 L A R E F O R Q . < L ,< l< '
• A N D P 3 L = 0 O T H E R W I S E *
' P 3 L = 1
(5 > « ^ 5) f t S J P 3 U
' P 0 3 = ’ » (t P - 0 3)
• F O R D F 2 U 2 = ' y < - V - U 2) y ' -» ' 2 = ' * < t ' » ' 2)

L 4 - 1

A N D D F 3 S E E T H E

= 1 f (r'T’3)

- 212 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21 3

M l] i * 2 l - < - < 0 r l > l > f 0
II423 F02*-< 1-<T'2*U2) >* < 1-(t'2-fU2) * (k+i))
C43 J BACK2 J OF'2L«- ((Y2-rU2) f tL) XP<)2
C443 L < - i - + l
C453 P-2i-f-f:- 2 ' - , C i a < l !- l » l) f f t F :-2i-
C463 - » o u t 2 x i (L > W)
C473 ->&a c i<2
£ 4 8 3 Q U T 2 J 1 T H E A B O V E I S F O R 0 < L i'< '
C 4 9 3 ' A M O F - 2 L . = o O T H E R W I S E '
C503 * «='2«- = '
C513 (5»>'̂ 5)ftsjP-2i-
C523 1 F'02 = ' »<t f02>
C533 'FOR t'Fi ui = 1 » (tu1) t ' ftKf rt=> , (tY D , ■ ns
II54 3 1------- '
C553 p:<-C»1t-(Wx u i))
C563 X X f - < l - < R * < K - N + i))) - r (l - R)
C573 J<-0
C583 s u m k -o
C593 B A C K i : S U M l < - S U M l + (< (Y 1 * U 1) * J) - (• J))
C603 J<-J+l
C613 ->o u t x x (J >,N)
C623 -4BACK1
C633 o u t i :p o 1*-<1«<< < <‘*,l*ui >*«>*< i'O)x(«x>)+s u m i >
C643 L.<-1
11653 Pll'-*-lOrlrl)rQ
C 663 Pi2M-(0>l> l)fO
C 6 7 3 B f t C K i i : A P l l L <. F 0 1 X C f l A L .) ^ ((J L) X (U 1 * L))
C 6 8 3 i
C 6 9 3 P i i i - p p i i L f C i a d r i r D r f l P i i i -
£703 - > O U T l l X X (L > <N-1))
£713 4BACK11
1:72a o u t h : ' r i i i _ = '
11733 SP-UI-
£ 7 4 3 ' T H E A B O V E P U L A R E F O R 0 1 <- .< N - l '
C753
11763 » « c i< 1 2 : a f i 2I-<-f-o .1x < < < a - r U i) * L) x < <n * (n - L)) ~JM) >
11773 L.<-I_+1
C783 P’i2'-<-F12'-» C13 < 1» i » 1 > ?<M>12«-
£793 -XOUT12XX < L_ > !< >
£803 -»BACK12
I! 313 0 U T 1 2 J 'P 1 2 L ='
£323 {UF-12L.
II83 3 'F01 ='»<fF01>
£ 8 4 3 ' T H E a b o v e p i 2 * - a r e f o r n i l < K '
C853 **•!
C 8 6 3 s u m i i l <- o
£873 MOKE : SUM 11 L<-SUM 1 ;LL +1 X (p 1 1 Li; I $ m :])
£883 x<-i + i
11893 >o u t i i l x\ <:c><N-:l))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

214

' C 9 0 3 - » M O R E
C 9 1 2 O U T l i L * J < - 1
C 9 2 3 s u m -j. 2 1 - < - 0
C933 MORE2JSUMi2'-<-suMi2i-+(Jx(P12‘-C'J51?13))
C 9 4 3 J P > J + 1
I I 9 5 3 -> o u t i 2 U x \ < J > (K - M))
C 9 6 3 4 M O R E 2
£973 o u t i 2 L . J S U M L . < - s u m i i l + s u m i 2 1-
C 9 Q 3 F ' E U T I L f (5 U M L - r N)
C 9 9 3 ' P E U T I L I = ' r (t P E U T I L)
C 1 0 0 3 U T X L j > < l - P 0 1) v H
C 1 0 1 3 U T X L 2 4 - 1 - P 0 2
C 1 0 2 3 U T X L 3 < - i - P 0 3

P E 1 1 S U T I L I Z A T I O N '

M E M O R Y U T I L I Z A T I O N '

I N S T R U C T I O N S / U N I T T I M E '
I N S T R U C T I O N S / U N I T T I M E '
I N S T R U C T I O N S / U N I T T I M E *

C 1 1 4 3 ' T H R O U S Y S = ' , (r T 5 Y S)
V

C 1 0 3 3 U T I L S Y S < - (U T I L 1 + U T I L 2 + U T I L 3) X 1 0 0 * 3
C 1 0 4 3 ' U T I L J = • , (^ U T I L J .) y • T H I S I S T H E
i: 1 0 5 3 ' U T I L 2 = ' y (f U T I L 2)
C l 0 6 3 ' U T I L 3 s ' , (T U T I L 3) , ' T H I S I S T H E
. 1 1 0 7 3 • U T I L S Y S = ' , (f U T I L S Y S)
C 1 0 8 3 ■ u i = 1 » < T < J 1) , ' A M O Y 1 = ' , (t n) » 1
1 1 1 0 9 3 1 U 2 = ' i (t^2) t ' t ' 2 = ' f < t T 2) » 1
1 1 1 1 0 3 1 u 3 = ' f (T U 3) , ' A M D Y 3 = ' , (Y '^*3) f '
i: 1 1 1 3 T P E < - (N x U l) X (P E U T I L)
C l 1 2 3 ' T H R O U P E ' ' S = ' , (t T P E)
C 1 1 3 3 T S Y S < - ((N X U D + U 2 + U 3) x (U T I L S Y S) 4 - 1 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix G

T H E S I M U L A T I O N P R O G R A M S F O R B O T H M O D E L S O F T H E
D A T A F L O W S Y S T E M O F C H A P T E R V I I

SIMULATE

THIS PROGRAM SIMULATES A DATA FLOW SYSTEM
IN THE SAME MANNER AS THE ANALYTIC MODEL DOES
IT GIVES THE OVERALL PICTURE OF A DATA FLOW MACHINEiiititiiiitiiiiiiifitttiiitiiiiiiiiiiiiiiiiiiiiiHiiiiiiiiii
RMULT 111

• FUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1,C24 EXPONENTIAL DISTRIBUTION

0,0/.1,.101/.2,.222/.3,.355/.U, .509/ .5, .69/ .6 , .915/ .7 ,1 .2/ .75,1 .38
.8,1 .6/.8U.1 .83/.88,2.12/.9,2.3/.92,2.52/.9«,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,U.6/.995,5.3/.998,6.2/.999,7/.9998,8

*
FOR THESERI

0,5/1 ,
RN1,C2FUNCTION

,15
INITIAL
INITIAL
INITIAL

3T0RAGE S $ P E S ,5

PE SERVICE TIME ALLOCATION

OF ISTRU-X J I N S T ,0 INITIALIZATION OF THE NUMBER
XSPPP,.3/XiQQQ,.U
XSSER1.20/XJSER2.20/XSSER3,«0

WHERE SER1 IS FOR THE P E ’S
AND SER2 13 FOR THE RESPACKET
AND SER3 IS FOR THE MEMORY.
SPECIFY THE NUMBER OF PE'S IN THE
SYSTEM.

THE MAIN PROGRAM SEGMENT

GENERATE THE MACRO INSTRUCTIONS

THIS IS A CONCEPTUAL QUEUE

INST GENERATE
ENTER
QUEUE

CAPCY TEST L
DEPART
ASSIGN
ADVANCE

STAY QUEUE
SEIZE
DEPART
ADVANCE
RELEASE
TRANSFER»
TRANSFER

QUEPE QUEUE

, , , 1 0
SYSTM
CONCP
Q$MEMQ,UO
CONCP
1.X4SER1
25 ,FN$XPDIS
MEMQ
MEM
MEMQ
X$SER3,FN*XPDIS
MEM

QUEPE t OF INST. THAT GO TO THE PE
I.E., THE READY INSTRUCTIONS.

.7,STAY,OUT
PEQ FOR THE PE SUBSECTION

PARAMETERS ASSIGNMENTS FOR PE SERVICE
TIME. THIS REPRESENTS THE ARRIVAL RATE
FOR THE MEMORY SUBSECTION

- 215 -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

216

O U T

»
*
»
»
*
*

E N T E R
D E P A R T
A D V A N C E
T E S T L
L E A V E
QUEUE
S E I Z E
D E P A R T
ADVANCE
R E L E A S E
T R A N S F E R
S A V E V A L U E
L E A V E
T E R M I N A T E

T H E T I M E R

G E N E R A T E
T E R M I N A T E

P E S
P E Q
P1 , F N $ X P D I S
Q $ R E S P Q ,S $ P E S
P E S
R E S P Q
R E S
R E S P Q
X $ S E R 2 , F N $ X P D I S
R E S
. S T A Y
D O N E + , 1
S Y S T M
1

1000
1

T H E C O N T R O L C A R D S

S T A R T
R E S E T

I N S T G E N E R A T E
S T A R T

10

,,,200
200

R M U L T 111
C L E A R X $ S E R 1 ,X $ S E R 2 ,X $ S E R 3
S T O R A G E S $ P E S ,10
S T A R T 2 0 0

R M U L T 111
C L E A R X $ S E R 1 ,X $ S E R 2 ,X $ S E R 3
S T O R A G E S $ P E S ,15
S T A R T 2 0 0

R M U L T 111
C L E A R X $ S E R 1 , X $ S E R 2 , X $ S E R 3
S T O R A G E S $ P E S ,20
S T A R T 2 0 0

R M U L T
C L E A R
S T O R A G E
S T A R T
E N D

11 1
X $ S E R 1 , X $ S E R 2 , X $ S E R 3
S $ P E S , 3 0
200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

217

PROGRAM (DFLOW SIMUL) THIS PROGRAM IS FOR DATA FLOW
PROGRAM S I M U L A T I O N . IT DIFFERES FROM THE PROGRAM DFLOW
ANALYTIC IN THE SENSE THAT IT SPECIFIES THE FINE DETAILS
OF EXECUTION I.E. IT IS BASED ON INDIVIDUAL INSTRUCTION
EXECUTION.

PESER0,20/1,
CONTR

FUNCTION
.30
STORAGE
VARIABLE
INITIAL
INITIAL

RN1.C2

S S P R O C S ,1
Q$MEMQU-1
X$OUT,0/X*STOR1,0/X*STOR2,O/X$ST0R3,0/X4STOH«,0
X 4QUCHK,0/X4WR0NG,0

INITIAL X1-X6.0
OUT EQU 20 ,X
ST0R1 SQU 21 ,X
ST0R2 EQU 22,X
ST0R3 EQU 23.X
STORU EQU 2« ,X
WRONG EQU 25 ,X
QUCHK

•
EQU 26.X

•
GENERATE ,,,1,,30 GENERATE AN INSTRUCTION
ASSIGN 1,1 THE CELL NUMBER OR ADDRESS
ASSIGN 2,1 THE INSTRUCTION NUMBER
ASSIGN 4.FN4PESER THE PROCESSING TIME IN THE PE
ASSIGN 5,2 THE NUMBER OF OPERANDS
ASSIGN 6,2 THE OPERAND COUNTER
ASSIGN 8,2 THE ADDRESS OF 1ST OPND IN THIS INSTR
ASSIGN 9,3 THE ADDRESS OF 2ND OPND IN THIS INSTR
ASSIGN 11,20 THE 1ST DEST. ADDRESS
ASSIGN 12,10 THE 2ND DEST. ADDRESS
ASSIGN 16,20 THE 3RD DEST. ADDRESS
PRIORITY P6 THE PRIORITY IS ASSIGNE IN ACCORDANCE
TRANSFER ,MEMR1

EACH GROUP HEREAFTER
HAVE THE SAME NUMBER
AND EACH NODE IN THE
SET OF VALUES.

WITH THE NUMBER OF OPERANDS IN THE
OPERAND COUNTER.

WILL RESEMBLE THE ABOVE (I.E., IT WILL
OF PARAMETERS BUT WITH DIFFERENT VALUES)
DATA FLOW GRAPH WILL HAVE A DISTINCTIVE

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

...1 . .30
1 ,«
2,2
4.FN4PESER
5.26.2
8,5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

218

A S S I G N 9,6
A S S I G N 1 1 , 2 1
A S S I G N 1 2 , 1 5
A S S I G N 1 3 , 1 8
A S S I G N 1 6 , 2 7
P R I O R I T Y P 6
T R A N S F E R , M E M R 1

G E N E R A T E

oCO

A S S I G N 1,7
A S S I G N 2 , 3
A S S I G N 4 , F N $ P E S E R
A S S I G N 5 , 2
A S S I G N 6 , 2
A S S I G N 8 , 8
A S S I G N 9,9
A S S I G N 11 ,23

* P R I O R I T Y P6
T R A N S F E R , M E M R 1

»

G E N E R A T E ... 1 * >30
A S S I G N 1,10
A S S I G N 2 , 4
A S S I G N 4 , F N $ P E S E R
A S S I G N 5 , 2
A S S I G N 6,2
A S S I G N 8,11
A S S I G N 9-,12
A S S I G N 11 ,24
A S S I G N 1 2 , 2 6
P R I O R I T Y P6
T R A N S F E R ,M E M R 1

G E N E R A T E ,, , 1 , , 3 0
A S S I G N 1 , 1 3
A S S I G N 2,5
A S S I G N 4 , F N $ P E S E R
A S S I G N 5,2
A S S I G N 6 , 2
A S S I G N 8 , 1 4
A S S I G N 9 , 1 5
A S S I G N 11 ,27
P R I O R I T Y P 6
T R A N S F E R ,M E M R 1

G E N E R A T E i , 1 1» 1 30
A S S I G N 1,16
A S S I G N 2,6
A S S I G N 4 , F N $ P E S E R
A S S I G N 5,1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

219

A S S I G N
A S S I G N
A S S I G N
A S S I G N

* P R I O R I T Y
T R A N S F E R»
G E N E R A T E
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
T R A N S F E R

«
G E N E R A T E
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
T R A N S F E R•

•
G E N E R A T E
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N

» A S S I G N
T R A N S F E R»
G E N E R A T E
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N
A S S I G N

6,1
8.17
9.18
11 ,36
P6
,MEMR1
,,,1,,30
1.19
2.7
4 ,FN$PESER
5.2
6,0
8.20
9,21
11 ,29
12,32
,MEMR1
,, , 1,, 30
1,22
2.8
4 ,FN$PESER
5.2
6,0
8.23
9.24
11,30
12,35
,MEMR1

,,, 1 ,, 30
1.25
2.9
4 ,FN$PESER
5.2
6,0
8.26
9,27
11 ,33
12,32
,MEMR1
>»,1> »30
1 ,28
2 . 1 0
4 ,FN$PESER
5.2
6,0
8.29
9.30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

220

A S S I G N 11 ,38
A S S I G N 1 2 , 3 2
A S S I G N 1 6 , 5 0
T R A N S F E R , M E M R 1

G E N E R A T E ,, , 1 , 130
A S S I G N 1,31
A S S I G N 2, 1 1
A S S I G N 4 , F N $ P E S E R
A S S I G N 5 , 2
A S S I G N 6 , 0
A S S I G N 8 . 3 2
A S S I G N 9 , 3 3
A S S I G N 1 1 , 3 9
A S S I G N 1 2 , 3 2
T R A N S F E R ,M E M R 1

G E N E R A T E , , , 1 ,, 30
A S S I G N 1 , 3 4
A S S I G N 2 , 1 2
A S S I G N 5 , 2
A S S I G N 6 , 0
A S S I G N 8 , 3 5
A S S I G N 9 , 3 6
A S S I G N 11 ,42
A S S I G N 1 2 , 3 2
T R A N S F E R , MEMR1

G E N E R A T E , , , 1 , s 30
A S S I G N 1 , 3 7
A S S I G N 2 , 1 3
A S S I G N 4 , F N $ P E S E R
A S S I G N 5 , 2
A S S I G N 6,0
A S S I G N 8 , 3 8
A S S I G N 9 , 3 9
A S S I G N 1 1 , 4 1
A S S I G N 1 2 , 3 2
A S S I G N 1 6 , 5 0
T R A N S F E R ,M E M R 1

G E N E R A T E , , , 1 , , 3 0
A S S I G N 1 ,40
A S S I G N 2 , 1 4
A S S I G N 4 , F N $ P E S E R
A S S I G N 5 , 2
& S S I G N 6 , 0
A S S I G N 8 , 4 1
A S S I G N 9 , 4 2
A S S I G N ' 1 1 , 2 9
A S S I G N 1 2 , 3 2
A S S I G N 1 6 , 5 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

221

TRANSFER ,MEHR1
MEMR1 ENTER

LOGIC R
LOGIC R

MEMRY TEST E

STSTM
LOCK
NEXIN
P6,P5iCHECK TEST THE OPERAND COUNTER TO SEE

IF IT HAS THE REQUIRED NUMBER
OF OPERANDS, IF YES PASS THE
INSTRUCTION TO THE PE qUEUE.

EXEC QUEUE OUQUE
ENTER PROCS
DEPART OUQUE
ADVANCE PM THE '
LEAVE PROCS
QUEUE DISQU
GATE LR NEXIN
LOGIC S NEXIN
DEPART DISQU
ADVANCE 10
SAVEVALUE ST OH 1 ,P 11
SAVEVALUE STOR2 ,P 12
SAVEVALUE STOR3 , P 13
SAVEVALUE STORM ,P 14
SAVEVALUE QUCHK,QSMEMQUt TEST G XlQUCHK,0,NOMEM
LOGIC S LOCK
TRANSFER ,OUTST

•NOMEM LOGIC R NEXIN
OUT ST TEST E P16,0,OUTPT C!

LEAVE SYSTM
TERMINATE 1

OUTPT SAVEVALUE P2,P16
SAVEVALUE OUT-t.,1
LEAVE SYSTM
TERMINATE 1

THE PROCESSOR AT WORK

THE FOLLOWING SEGMENT REPRESENT THE MEMORY. AS SOON
AS AN INSTRUCTION IS EXECUTED IN THE PE THE MEMORY
STARTS CHECKING IF THE RESULT SHOULD BE ASSIGNED TO
ANY OTHER INSTRUCTIONS AND DECREMENTING THE OPERAND
COUNTER AS A RESULT

CHECK QUEUE
TEST LE
LOGIC R
GATE LS
SAVEVALUE
SEIZE
ADVANCE
ASSIGN

MEMQU
Q*DUMY,0,MORE
CONCP
LOCK
TEMP , QAKEMQU
MEM
5
7+t 1 EOR THE CASE THAT THE INSTRUCTION

LOOPS.THIS SEGMENT WILL TRY TO CATCH IT

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

222

* TEST LE P7,30.EXIT
TEST E P8,X$STOR1.,NEXT1
ASSIGN 6*, 1

NEXT1 TEST E P8,X$STOR2,NEXT4
ASSIGN 6+,l

•NEXT2 TEST E P8 ,XSSTOR3 .NEXT3 THIS AND THE NEXT TEST AHE FOR THE• ASSIGN 6*,1 3RD AND UTH DESTINATION ADDRESSES
•NEXT3 TEST E P8 ,X$ST0R4 .NEXT1* IF THEY EXIST.
i ASSIGN 6+, 1
NEXT4 TEST E P9.XSSTOR1 ,NEXT5

ASSIGN 6*,1
NEXT5 TEST E P9.XSSTOR2,NEXTF

ASSIGN 6+, 1
•NEXT6 TEST E P9, XAST0R3.NEXT7
• ASSIGN 6+, 1
•NEXT7 TEST E P9.XSSTOR4,NEXTF
> ASSIGN 6+, 1
NEXTF RELEASE MEM

« SAVEVALUE TEMP-, 1
TEST LE VJCONTR.O,REPET
LOGIC R LOCK
LOGIC R NEXIN
LOGIC S CONCP

REPET DEPART MEMQU
TEST E P5.P6.WAIT
TRANSFER ,EXEC

WAIT QUEUE DUMY
GATE LS CONCP
DEPART DUMY
TEST LE QSDUMY.O,EMPTY
LOGIC R CONCP

EMPTY TRANSFER .CHECK
EXIT SAVEVALUE WRONG,P2

t TERMINATE 1 WHERE P2 IS THE INSTRUCTION NUMBER
•
l THE TIMER SEGMENT

I GENERATE 1000
* TERMINATE 1

*
t CONTROL CARDS

START 14 THIS SHOULD EQUAL TO THE NUMBER
• OF INSTRUCTIONS IN THE SYSTEM.

STORAGE
CLEAR

StPROCS,4 FOR THE SECOND RUN

START 14

STORAGE
CLEAR

SSPROCS,7 FOR THE THIRD RUN

*
START 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

223

S T O R A G E
C L E A R
S T A R T•
S T O R A G E
C L E A R
S T A R T

»
S T O R A G E
C L E A R
S T A R T

»
E N D

S $ P R 0 C S , 1 0 F O R T H E F O R T H R U N

14

S $ P R O C S ,13 F O R T H E F I F T H R U N

14

S $ P R O C S ,20 F O R T H E S I X T H R U N

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

