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ABSTRACT

ANALYSIS OF PARALLEL MULTIPROCESSOR ARCHITECTURE
BY

MANSOUR H JARAGH, B.S.E.E.,M.S.E.E.

Doctor of Philosophy in Electrical and Computer Engineering
New Mexico State University
Las Cruces, New Mexico 1982

Dr Javin M. Taylor, Chairman

This dissertation describes the awthor's research in 1)
the design and development of small general purpose
bit-slice emulators; 2) model formulation of networks using
small processors or bit-slice emulators; 3) performance
evaluation of the resultant network models; and 4) design
methods for evaluation of these nework structures.

Networks of small processing elements can have unlimited
variety. Out of the many possible multiprocessing
architectures, we have proposed three models to study in
this dissertation. These models treat von Neumann and

non-von Neumann structures and provide a basis for the
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analysis and performance evaluation of various parallel
configurations of small LSI processing elements, such as
microprogrammable bit-slice deviéeé. The three parallel
architecture models analyzed are 1) the controlled
multiserver model; 2) the array model; and 3) the data flow
model.

The general purpose bit-slice emulator developed at New
Mexico State University is used in the network models. The
bit-slice emulator is very versatile and therefore can
easily be modified to fit various requirements. Analytic
and simulation techniques are employed in this study. For
some models, both mi¢ro and macro analyses are performed.
At the macro level, the analysis 1is carried out at the job
level, whereas at the micro level the analysis is concerned
with the behavior of the system at the instruction execution
level.

OQur intent is not to compare these models nor expect them
to be universally applicable, but to provide building blocks
and various approaches. We beleive that this contribution
will assist network researchers in effectively constructing

and evaluating their own particular network models.
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Chapter I

INTRODUCTION

1.1 GOALS AND BACKGROUND

The purpose of this research is to develop models and
procedures for analyzing the performance of networks
consisting of 1large numbers of small processing elements.
We envision these small processing elements as, perheps,
microprogrammable bit~slice devices or single board
microprocessors. However, this is not a restriction as to
the use of the models presented.

The motivation for this research grew out of studies and
development of reconfigurable architecture and universal
cascadable bit-slice emulators for the US Army White Sands
Missile Range. In this research, a bit-slice emulator was
developed to emulate 8-bit and 16-bit microprocessors, as
well as special purpose networks such as array processors.
It became obvious that if these bit-slice emulators had the
desired reconfigurability, the next step was that of
developing generalized procedures for constructing models

and analyzing networks comprised of these emulators.
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This dissertation describes the author's contribution to
this research, which includes 1) design and development of
the control portion of the bit-slice emulator, 2)model
formulation and analysis for three types of networks
comprised of bit-slice emulators, and 3) design methods for
evaluation of these network structures.

Networks of small processing elements can have unlimited
variety. Consequently, in this research the scope has been
narrowed to the study of three network models. A practical
methodology is developed and applied to the performance
investigation of these three structures. Each structure is
studied by itself. The main interest is the construction
and analysis of a mathematical model for each structure.
Analytiec and simulation programs are developed to enhance
our study. This research is particularly appropriate due to
recent research efforts in VLSI, the introduction of 16-bit
microprocessors, and the development of radically different
LSI architectures, such as the recently announced Intel 432.

Since its invention, the computer has gone through many
developmental stages. As more complex jobs are created, the
need for developing faster and faster machines becomes more
imminent. With the continuously decreasing cost of
microprocessors and other LSI chips, the notion of using
large arrays of these devices to perform in parallel becomes

a practical one.
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3

In parallel processing more than one processor isvused to
accomplish the processing of a given job, provided that this
job 1is applicable in a parallel processing environment.
Parallel processing 1is often refered to as multiprocessing
or multiprogramming. Multiprocessing 1is defined as the
simultaneous processing of two or more portions of the same
program by two (or more) processing units. Multiprogramming
is defined as the time and resource sharing of a computer by
two (or more) programs residing simultaneously in primary
memory. Parallel processing can include either of the above
or a comgination of them.

Why are there so many different computer configurations
and by what eriteria can the performance of a computer be
Judged? Some typical criteria are the speed, reliability,
versatility, programming c¢onvienence, cost, and most
importantly the computing power. The computing power
includes parameters such as the number of bits per word, and
the size of the main memory, plus others.

Many of the computer archibécture innovations are mainly
motivated by the need for processor speed. The processor
speed and computing power are critical to some real time
analysis, such as pattern recognition, image analysis, and
information gathering from satellites.

Over the 1last twenty years, a great deal of research

effort has been devoted to the development of performance
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4
evaluation of large computer systems [ROBL81],[SAST73], and
(DENN78] . Now, with the interest in networking, the time
has come to study performance models of parallel

configurations of LSI processing elements [ WONG78 1.

1.2 MOTIVATION

The term "performance evaluation" typically implies the
evaluation of large computers. While it is generally true
that it 1is not cost effective to analyze the performance
evaluation of small systems employing a few microprocessing
elements, it does become cost effective to evaluate the
performance of such systems when considering the
implementation of hundreds of these devices in a parallel
architecture. Due to the availability and the 1lower cost
associated with LSI chips, future systems will emerge that
use these microprocessing elements, [BRIG79 ), and [HWANS81 ]
Thus, devising algorithms to analyze and evaluate their
performance is important.

Out of the many possible multiprocessing architectures,
we have proposed three models to study in this dissertation.
These models provide a Dbasis for the analysis and
performance evaluation of various parallel configurations of
smail LSI processing elements, such as microprogrammable
bit-slice devices. The three parallel architecture models
analyzed are

1« The controlled multiserver model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. The array model
3. The data flow model.
The general purpose bit-slice emulator developed at New
Mexico State University is used in the above models. The
bit-slice emulator 1s very versatile and therefore can
easily be modified to fit our needs. Some minor
modifications are discussed in order to make the designed
system applicable to a paraliel processing environment. Von
Neumann and non-von Neumann architectures are pursued.
Simulation and analytic techniques are developed in order to
analyze the different systems studied.
The basic measures of performance that are considered
are as follows:
1. Processing element utilization.
2. The control unit utilization.
3. The total system throughput.

4, The average queue length (where applicable).

1.3 D.SSERTATION ORGANIZATION

The material presented in this dissertation is divided
into two main parts. The first part, chapters II through
IV, discusses the basic 1issues of parallel architecture,
such as the different classes pf system organization and the
different c¢lassification schemes, basic microprogrammed

emulation, and performance evaluation analysis techniques.
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The second part, chapters V through VII, focuses in on
several different models proposed for parallel processing
and the resulting performance evaluation analysis.

Chapter II discusses the basic types of parallel computer
architectures. Two architectures in general are viewed: the
von Neumann and the non-von Neumann architectures. The
direct execution computer and the data flow computer are
used as examples of the non-von Neumann machine, whereas the
array and pipeline machines are used as examples of the von
Neumann machines. The schemes wused for classifying
computing systems are also reviewed. Basically two
classification schemes are discussed, the Flynn
classification scheme and the Handler classification scheme.

The basic processing element that is used in the models
of chapters V through VII is discussed in chapter III. The
principal blocks of the control unit and the processing unit
sections are presented. The processing element consists of
an ALU unit and a control unit. The basic ALU unit ( which
can be increased by orders of 8 ) is an 8-bit bit-slice
machine using the Am2903 (the super slice).

Chapter IV reviews the basic concepts of queueing such as
the arrival rate, the service rate, and the queueing
discipline. Due to 1its importance in this analysis, the
"network of queues"™ method is presented. The general

simulation flow graph is also discussed. The APL language

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

is used for the analytic case while GPSS language 1is used
for the simulation study. Poisson arrival and exponential
service times are employed in most of the models studied.

In chapter V, the proposed model for the controlled
multiserver system is presented. In the controlled
multiserver model, several processing elements (PE's), each
with a specific function, are employed. All the PE's are
controlled by a single central control unit and are
activated via an instruction analyzer. The mathematical
model is studied using two methods: analytic and simulation.
Th's model is particularly good in application programs
where there are only a few number of operations and each
group of instructions is executed repeatedly.

The second model, the array model, is presented in
chapter VI, Unlike the model of chapter V, all the PE's or
a subset of the PE set are utilized in executing an incoming
Job. The PE's allocated to the incoming job are assigned
using a probability selection vector of size (nx1), where n
is the number of PE's. In this analysis we assume that
there are always a sufficient number of processing elements
to serve the incoming job. An alternative assumption is
that there are not enough processing elements to serve the
incoming Jjob. This assumption is not necessary in our
network research, but the model proposed can be extended to

this case.
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The array model is analyzed from two different points of
view. The macro-model is associated with the job execution
in the system. That is, the entity unit in the system is
the job as a whole. The macro-model is analyzed with both
analytic and simulation methods. The results obtained in
the two cases are shown to be similar. The second model,
the micro-model, 1is associated with the instructions in the
system, and a fixed number of jobs are considered. The
micro~model is analyzed using simulation techniques only.
The array model is good for vector-type and matrix-like
problems. 1In general the array systems are very specialized
and are tailored for specific application and environment.
Failure of any processing element in the system will bring
the whole system to a halt.

Lastly, the data flow model is presented in chapter VII.
Unlike the two models of chapters V and VI, the data flow
model is an example of a non-von Neumann machine. The
parallelism in the data flow system 1lies in the fact that
all the processing elements can be busy simultaneously
performing distinct operations. Similar techniques are used
to analyze the data flow system. The simulation analysis is
performed in two parts: macro and micro-analysis. The
macro-model which is also analyzed by the analytic technique
yields similar results. The micro-analysis, on the other

hand, simulates an actual program execution thus providing a
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Finally, chapter VIII summarizes the results obtained in
this dissertaion and discusses the future research of
multiprocessors.
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Chapter 1II

A GENERAL VIEW OF MULTIPROCESSING SYSTEMS AND
THEIR CLASSIFICATION -

2.1 VON NEUMANN STRUCTURES

The basic characteristies and architecture of digital
computers was first set forth in a systematic manner by the
mathmetician John von Neumann in 1945, A computer that
follows the von Neumann structure is referred to as a von
Neumann machine. Figure 1 shows the basic organization of
a typical von Neumann machine. A von Neumann machine is
said to have the following properties:

1. A single sequential memory.

A program and its data are stored intermixed in a
single memory, and the memory is referenced with
sequential addresses.

2. A linear memory.

The memory 1is one-dimensional, that is, it has the
appearance of a vector of words.

3. No explicit distinction between instructions and

data.

- 10 -
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4, Meanine is not an inherent part of data.
The meaning of data is assigned by'pfogram logic.
That 1is, the interpretation of a pattern as an
instruction or a datum depends on the state of the
machine when the code is fetched from the memory. If
the state of the machine dictates that the <code
should be transferred to the control unit, then that
code is interpreted as an instruction. ‘On the other
hand, if the code is transferred to a register, then
it is treated as data.
5. A program counter.
A register which is used to indicate the location of
the next instruction to be executed and which 1is
automatically incremented with each instruction
fetch.
A typical von Neumann machine consists of three basic parts:
1) A central processing unit.
2) A program storage unit,
3) A tube connecting the cpu to the store. The address
to the store is sent thrcugh this tube. This tube
is sometimes refferred to as the von Neumann
bottleneck [BACK78].
Thus the von Neumann machine employes a single instruction

stream which will operate on a single data stream.
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Figure 1: The Basic Organization of a von Neumann Machine

These kinds of machines are usually known as uniprocessors.
The speed of processing a certain process (or task) is,
therefore, dependent on the speed of this single CPU. The

execution of a task in the von Neumann machine follows the

flowchart shown in Figure 2,

In order to overcome the execution restriction in the

von Neumann architecture, various multiprocessing schemes
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Figure 2: Basic Task Execution Flow.

have been devised. We will briefly discuss the different
classes of multiprocessing systems that exist. Also a brief
discussion of the different multiprocessing classification
schemes will be outlined in the next section.

Before going on with the details, 1let us define the
following terms so that whenever they are referred to in the
context of the discussion in this dissertation, these

definitions will apply.
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1. Multiprocessor: A group of computing units each with
its own ins£ruction stream and data stream sharing a
common memory and control wunit. The ANSI (American
National Standard X8.-1970) definition of
multiprocessor is given as: "A computer employing
two or more processing units under integrated
control."

2. Multicomputér: Independent computers often with one
acting as a supervisor in performing a common task at
a single location.

3.. Computer Network: Independent computers at different
geographical locations connected by a communication
channel. A unique resource at one site can be
available to all the members of the network.

4, Concurrency: This property is associated with two or
more activities that are in progress simultaneously;
e.g., the central processing unit can be exeguting
instructions from some task at the same time a
peripheral processor is carrying out an input/output

operation.
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2.2 NON-VON NEUMANN STﬁUCTURES

The concept of non-von Neumann machines has been the
concern of research in computer architecture for many years.
Some interesting machines have been proposed and built.
Examples are the data flow computer {DENN80a] ,
[KELL80], [COTE78],and [JOHN8O ], the direct execution machine
[CHU81], and the early SYMBOL computer [ DITZ81]. 1In chapter
VII we will concentrate more on the data flow computers and
will attempt to msdel a basic machine. A simulation program
is developed by which the performance of such machines can

be studied.

2.2.1 Direct Execution Machine (D.E.M.)

An example of a non-von Neumann architecture is the
direct execution machine discussed in [CHU81] . The basic
organization of a direct execution machine is shown to
consist of three processors, which are as follows:

1. The lexical processor

2. The control processor

3. The data processor
The lexical processor assembles source program (of a high

level 1language) characters from the program memory into
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tokens sueh as operators, reserved words, names, and
numbers, then delivers them to the language processor (which
in turn consists of the control and the data processor).
The control processor executes tokens which are part of the
control flow, whereas the data processor =xecutes tokens
which are part of the data flow. Figure 3 below showes the

basic organization of a direct-execution computer (D.E.C.).

Program Lexical
Memory < =P roc.
Cout Control
Bus [~™ procle——mAssociative
1 Memory
Data Data Data
Memory - ™ proc [P Associative
Memory

Figure 3: Organization of a Direct-Execution Computer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17
Examples of a detailed program storge and organization of a
direct-execution machine are found in [CHU81].

A direct-execution computer executes the tokens of a high
level language rather than a compiler-generated machine
code. In contrast, an indirect-execution computer first
translates a high 1level 1language into an intermediate
language such as polish string, and then executes it by
hardware.

The direct-execution machine differs from the von Neumann
architecture in the following way:

1. In the basic von Neumann architecture, the program
code and data are stored in a single memory, whereas
in the D.E.C. the program code is stored in the
program memory and data is stored in the data menmory.

2. The conventional cpu of a von Neumann machine has
been split into two separate processors: the control
processor and the data processor. Therefore the
control processor executes tokens which are part of
the program control flow, while the data processor
executes tokens which are part of the data flow. In
the von Neumann architecture, the cpu executes both
the control instructions such as branch, jump ¢to
subroutine, and the data manipulation instructions

such as add, multiply.
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3. The D.E.C. offers an increase in the instruction
execution rate; the 1lexical processor operates in

parallel with the data and the control processor.

2.2.2 Data Flow Machine

The data flow architecture 1is considered a non-von
Neumann architecture, as was mentioned earlier. Like any
computer, the data flow also sequences through the
instructions. However, there is no program counter (PC) to
be updated each time an insruction is fetched. 1Instead, the
sequencing of instruction execution depends only on the
availability of the operands required by the instruction.

Data flow machines are constructed of modules and the
communication between these modules is asynchronous. In
his dissertation, Rumbaugh clearly outlines the construction
of a basic data flow multiprocessor [ RUMB75]. The principle
advantage of the data flow multiprocessing system over
conventional multiprocessing systems is reduced complexity
of the processor memory connection. The instructions in a
data flow machine reside in the main memory, and as the
operands for a particular instruection (which are specified
either initially or are provided during the course of

execution of other instructions) are available, then that
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instruction is ready, regardless of the states of other
instructions. When an instruction execution is completed,
the result 1is provided to all other instructions that
require it. We will explain this principle in more detail
with illustrative examples in chapter VII,

The kind of algorithms executed in a data flow machine
are assumed to have enough parallelism in order to fully
utilize the processors. As it will be shown later, the data
flow concept will be beneficial only for a particular class
of programs.

The architecture of a data flow computer resembles that
of a pipeline system. 1In a pipeline machine, each preceding
unit passes on the ready task (or portion of a task) to the
next unit for attention. Unlike the conventional pipeline,
the instructions in a data flow pipeline must come back to
where they started from, i.e., the first unit. Thus the
data flow machine could be considered as a circular

pipeline.

2.3 PARALLELISM IN COMPUTER ARCHITECTURE

When speaking of parallelism in computer architecture,
one should be aware of the different 1levels and kinds of
parallelism within a specific system. For example, there
can exist the following:

1. Parallelism between jobs
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2. Parallelism between subroutines in a run

3. Parallelism between instructions

4, Parallelism between stages in an instruction

(Hardware 1level)

For ianstance, if two equations in an algebraic system are
independent of each other and the solution of one variable
does not provide an input to the other equation, then these
two equations could be processed simultaneously. Therefore,
parallel execution of tasks within the same job has
occurred. In other situations, parallel execution of two
independent jobs concurrently can take place. In a
multiprocessor system where more than one processor is
controlled by the same control unit, several jobs can be
processed within the same time fraae. In other parallel
executions, the control unit which controls several
identical processing elements 1is used to direct all the PE
units with the same instructions, but each PE does its own
data manipulation. This type of parallel system is called
"array processing."

Various configurations of more than one processing
element has resulted in a variety of parallel systems. Each
system has its own characteristies, which leads to certain

advantages and disadvantages.
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2.4 CLASSIFICATION OF COMPUTING SYSTEMS

Due to the growth of contemporary computer technology, it
seems a little difficult to create a classification scheme
for the different types of computing systems. Several
classification schemes have been proposed in the past twe
decades: Flynn classification in 1966 ([FLYN66], Feng
classification in 1972 [FENG72 ], and The Handler scheme in
1977 [HANDTT]. Each of the above schemes tries to include
most ¢f the contemporary systems; nevertheless each suffers
from some deficiency. We will discuss the first and the

last scheme in some detail.

2.4.1 Flynn Classification Scheme

In 1966 M.J. Flynn puplished a paper in which he
classified the different computer structures using the
stream concept. Stream simply means a sequence of items
(instructions or data as executed or operated on by a
processor). The four broad classifications of machine
organizations which he defined are given below:

1. SISD:

Single-instruction stream =~ single~data stream
organization. This kind of organization represents
the basic von Neumann structure and includes the

class of uniprocessors.
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2. SIMD:

Single-instruction stream = multiple-data stream
organization. This kind of organization 1includes
most array processing systems, e.g., ILLIAC 1IV,
Goodyear corporation STARAN, and SOLOMON. The array
processing systems employ a single control unit along
with a single instruction stream to serve a group of
processing units,

3. MISD:

Multiple-instruction stream - single-data stream
organization. Some authors tend to include pipeline
processors in this category. The data passes through
different consecutive stages where in each stage a
seperate instruction stream is applied.

4, MIMD:

Multiple-instruction stream - multiple data-stream
organization. This includes most multiprocessing
organizations. Univac has proposed many different
MIMD organizations.

The above classes could be quantified somewhat by
specifying the number of streams of each type in the
organization or the number of instruction streams per data
stream or vice versa [FLYN72]. A opictorial of the four

different organizations is shown in Figure 4.
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Figure 4: The Four Flynn Classifications
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The limitation of the Flynn classification lies 1in the
definition of MIMD, The MIMD is very broad in the sense
that it does not mention the type of connection used, i.e.,
whether the processors are connected via a bus system or can
access multiport memory. Furthermore, some authors tend to
include various types of pipeline computers in the MISD
class. It is inappropriate to do this since the different

types of pipelining are not distinguishable.

2.4.2 Handler Classification Scheme

Handler has proposed a different classification scheme
for computing systems. In some regards, the Handler scheme
is more explicit than the Flynn scheme. It is also known as
the Erlangen Classification Scheme, (E.C.S.) [ HAND77]. Each
system is represented by a triple:

c = (K,D,W)

k = The number of control units

D = The number of ALU's controlled by each CU

W

The i-unit length of the entities managed by the D's

For example, for the following systems the triples are given as:

Systen Iriple

IBM System/370 (1,1,32)
CDC 6400 (1,1,60)
IBM System/360 dual processor (2,1,32)
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ILLIAC V (1,64,64)

C.mmp (16,1,16)
Further, the classification could be written in the fornm
ixi! where 1' indicates the parallelism or the number of
pipeline stages in the ith component. Then, in KxK' , K' is
the number of independent computers of the same type of
processing programs. In DxD' , D' is the number of
functional units or ALU's per processor. And in WxW*' , W?

is the number of stages in a pipelined ALU.

Examples:
TI ASC = (1,4,64x%8)
CDC 6600 = (1,1%10,60)

Clearly the K and D parameters would indicate the type of
computer system. For example, K=1 and D=1 would be
equivalent to an SISD structure, and K=1 and D=n where n.l
would be an SIMD system. The Handler classification suffers
from the following 1limitation: It does not explicitly or
implicitly define the kind of parallelism used. It only
specifies the number of units of each kind and does not
mention the interconnection. For instance, c=(2,5,=)
signifies a system consisting of two CU's each having five
PE's, as indicated in Figure 5.

In this regard, the Flynn classification is more
specific, The other problem from which the ECS suffers is

the inherently binary nature of the definition of W (the
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Figure 5: The Possible Diagram for C=(2,5,-)

word length). That is, if a computer is based on another

modulo number system, then the ECS should be modified.
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2.5 EXAMPLE OF EACH ORGANIZATION TYPE

The currently existing parallel machines are pipeline
machines, array machines, associative processors, cellular
machines, and multiprocessors. The first three machines are
useful for a restricted class of problems, whereas the
fourth is extremly hard to program and as a result is not
very popular. Different multiprocessing systems exist, but
the software for these processors takes a considerable
effort to build.

The ma jor problem confronting the parallel systems in
general 1is how to wuse such systems as efficiently as
possible, 1i.e., wutilizing the full power of the PE's., At
present, technology can provide the necessary hardware to
develop a super multiprocessing system, but such a system is
futile without the required software. The efficiency
(throughput) of a computer system c¢an be increased by
intensifying the usage of system resources which are either
active or passive. Active resources such as processors
(both for data and I/0) perform the calculations and move
information to other parts of the system; pas3ive resources
such as memories, registers, and bulk storage devices hold
information produced by the active resources for later use.
Furthermore, as the number of PE's increases, the
processor-to-memory interconnection grows and becomes more

complex. The interconnecticn problem is an extensive
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research area by itself and will not be discussed here. The
December 1981 issue of COMPUTER magazine is devoted to the
problem of interconnection in computer networks.

In this section we will discuss two types of
organizations: the pipeline and the array system. The
array system will be discussed in more detail in chapter VI.
Somewhat detailed analysis of pipeline system is done in
this section. Moreover, more examples of multiprocessing
systems are found in [ENSL74].

Recently two articles have been written that are totally
devoted to the bibliographies on the sub ject of
multiprocessing systems: [LOUI81], and [SATY80 }; more than
250 citations are referenced 1in these articles, and are

considered a valuable source in the subject.

2.5.1 Pipeline Processor

The basic philosophy in pipelining is to break up the
task into a number of subtasks which in turn are operated on
in a manner similar to the assembly line technique. In
effect the system is divided 1into several functional units,
where each unit is assigned a specific task. A speed-up
factor of more than two orders of magnitude can be obtained
compared with the uniprocessor. Typical pipeline systems

are uniprocessor systems with concurrent SISD organization.

Some examples of pipeline systems are the Control Data
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Star(CDC Star-100) and the Texas Instrument ASC system. The
IBM 370-195 employs a pipeline floating-point multiply unit.
In TI ASC and CDC STAR-100 pipelining is employed to perform
the same arithmetic operations on a series of operands as
they progress down the pipeline. Keeping the pipeline full
is the main desire in exploiting the system characteristics.
Since the pipeline system is not modeled in this study, it
is worthwhile at this point to get some insight into the
basic performance of a typical pipeline organization. We
will investigate the throughput as a function of the number
of stages and the jobs in the system.

A pipelined process is decomposed into a series of
sequential subprocesses and each subprocess uses one stage
of the pipeline. Each stage is isolated from its neighbors;
therefore, overlapping will occur. For example, consider a
pipeline system consisting of four stages. Starting with the
system empty, then at t=%t1, stage 1 is busy on the first
job, whereas stages 2-U4 are idle. At t=t2, stage 2 will be
busy serving job 1 while stage 1 is receiving process 2, and
so on. The diagram below illusrates this mechanism.

Let k

the number of processes waiting in the system,

n the number of stages (or system capacity),

and let k=n=zl4 for this particular example.

Then the total execution time is given as

T nxt+ (k=1) x ¢

e + 3¢ = Tt
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Figure 6: A Four-Stage Pipeline System

or (7/4) time units per stage. Therefore, it will take 7
time units to flush out the system. Comparing this pipeline
system with one that consists of only one stage, with each
process taking 4 time units, it will take 16 time units to
process all four jobs. A considerable gain is achieved in
the throughput for the pipeline system. The improvenmnt
factor is over 50% for this simple case. Note that the
overall throughput performance depends also on the
availability of jobs in the system.

The curves of Figures 7 and 8 4illustrate that the
throughput is directly proportional to the number of stages.

The assumption that is made in all of the above cases is the
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availability of jobs. In Figure 7, the curves show the
throughput of a pipeline system versus the number of stages
in the systen. Since the prineiple time unit is the same
for all the cases (i.e., the time a process spends from
stage 1 to stage n is the same), it should be expected that
as the number of stages increases then the probability of
overlapping would increase. Thus the utilization of the
stages would increase, which in turn results in a higher
degree of throughput. However, Figure 8 illustrates the
relationship between the percent throughput and the number

of tasks waiting in the system.

2.5.2 Array Processing

In the SIMD system, as mentioned before, the control unit

CU dispatches the instructions to the processing elements

PE's; consequently, all active PE's execute the same
instruction simultaneously. Each active PE executes the
instruction on its own data in 1its own memory. The

interconnection network provides communication among the
processing -elements. Tnis type of machine structure is
designed to exploit the parallelism of tasks such as vector
and matrix-like problems,

The array systems, hewever, do have some drawbacks which
we will mention in brief. The major drawback of the

existing array systems 1s their 1ineffective use of the
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available hardware resources. This fact 1is due to the
synchronous operation of all the processors working in the
array. The number of parallel data streams are not fixed,
and in the case where the number of data streams decreases,
there will be some idle processors. Thus far it has not
been possible to put the idle processors to work ZREDDT76¢.
Furthermore, the cost of such systems is quite high. It is
worthwhile to note that the typical number of processing
elements in an array system is greater than 64, whereas in
the pipeline processor system, the typical number of
processors 1is 1. The basic configuration of an array
processor is shown in Figure 9.

The first work done in the array processing area was on
SOLOMON I and II. This work 1led to the ILLIAC IV system.
SOLOMON contains 1024 processing elements in an array of
32x32 PE's. All the PE's are under the control of a single
control processor. On the other hand, the ILLIAC IV
includes 256 PE's, each more powerfull than the PE's of
SOLOMON. The 256 processing elements are arranged in four
guadrants, of 8xB8 PE each, with a separate CU for each
quadrant. Each PE has a private memory of 2k 64-bits words.
Figure 10 illustrates the organization of the conmplete

ILLIAC IV computer system.
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Chapter III

A MODULAR BIT-SLICE PROCESSING ELEMENT (PE)

3.1 INTRODUCTION

The NMSU modular bit-slice emulator ( MBSE ) which the
author helped develop will be used as the basiec processing
element in our investigation of parallel mnmultiprocessor
architectures. Due to its microprogramming ability, the
NMSU-MBSE system provides an excellent machine to be used in
the various models proposed.

Bit-slice microprocessors in general are more versatile
than the single chip microprocessors. On the other hand,
they are more difficult to progranm. Their use 1is often
somewhat 1limited to the application for which they are
designed. But if they are designed to emulate another
processor, then the user should see little difference
between the real processor and the emulated one except in
instruction execution time. Bit-slice microprocessors are
known as variable instruction set microprocessors, in
contrast to the fixed instruction set microprocessors. The
flexibility associated with the bit-slice machines makes
them very desirable in certain engineering applications.

Emulation is a combined hardware-software (firmware)

- 38 -
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approach to the process of modeling the characteristic of
machine Y (the target) on machine X (the host). The code in
machine X makes it appear as machine Y to the user.
Consequently, the uszr can write the software for machine Y
by using only machine X. In other words, emulation is a
complete set of instructions which, when stored in the
control store of a bit-slice microprocessor, defines a new
machine.

Due to their microprogramming ability, bit-slice elements
play a significant role in process emulation. In this
chapter, the basic elements of a general purpose bit-slice
emulator designed at New Mexico State University are
discussed and explained in some detail.

Due ¢to their nature, bit-slice elements play a
significant role in nicroprogramming. Husson [HUSS70]
proposed the following definition for microprogramming:
"Microprogramming is a technique for designing and
implementing the control function of a data processing
system as a sequence of control signals, to interpret fixed
or dynamically changeable data processing functions. These
control signals, organized on a word basis and stored in a
fixed or dynamically changeable control memory, represent
the states of the signals which control the flow of
information between the executing functions and the orderly
transition between these signal states,"p 20, A description

of recent applications of microprogramming is found in
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[RAUS80] . Furthermore, the advantages and disadvantages of
microprogrammed implementation compared to hardware
implementation 1is nicely outlined. Two microprogramming
techniques can essentially be specified:

1) vertical microprogramming
2) horizontal microprograrming

In vertical microprogramming, a shorter field is used, but
it takes many microinstructions to accomplish the desired
functions, whereas in horizontal microprogramming, 1larger
fields are wused and thus fewer microinstructions are
required to perform the necessary function. The latter, of
course, has a disadvantage: the microbits are not used as
efficiently as in the former. Thus, horizontal
microprogramming. is not very economical when compared with
the vertical microprogramming. Nevertheless, the horizontal
microprogramming is used whenever speed 1is of concern and
importance. Maximal parallelism at hardware level can be
exploited by horizontal microprogramming. Generating the
microinstructions c¢an be cumbersome and sometimes time
consunming.

In the NMSU-MBSE design horizontal microprogramming is
used. The microinsruction length is 108 bits long. Out of
the 108, 104 ©bits are pipelined and the other U bits come
directly out of the control store and are used to control
the MUd-phase clock chip Am2925 . The microinstruction

fields are shown in Figure 11,
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3.2 THE ALU UNIT

A single ALU board constitutes an 8-bit-wide data bus.
Each additional ALU board added to the system increases the
data bus bits by a factor of 8. The ALU'S are designed in
such a way that when connecting more than one ALU together,
the proper signals are generated, which in turn specify
which board is the most significant slice (MSS), and which
is the least significant slice (LSS). In effect, each board
has two neighbors, right and left. If a board does not have
a left neighbor, then it is the MSS, and if it does not have
a right neighbor, then it is the LSS. Consequently, if a
board has neither left nor right neighbor, it is considered
to be the MSS and LSS at the same time, e.g., as in the

8-bit machines.

AM2903:

The ALU chip used in this design is the AMD AM2903, a
b-bit slice. Each board has two AM2903's. The following
characteristics are summarized for the AM2903:

1. Independent access to two different registers

2. Performs 16 arithmetic and logical functions

3. Left or right shift independent of ALU

4, Has four status lines: carry, overflow, 2zero, and

negative

5. Horizontally expandable to any word length

6. Has a 16 words by 4 bits registers with two ports,

expandable to any number of registers.
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Figure 12 illustrates the basic organization of the
bit-slice design employed. Since the processing elements
used in the different models of chapters V,VI, and VII are
groups of independent PE'S, it is necessary to move the
status, shift, and carry control unit (the SSC) from the
central controller to each of the PE boards. After this
modification the general block diagram will be that of
Figure 13, For an 8-bit processor, only one ALU board and
one sequencer board are needed, For a 16-bit processor, two
such boards are needed along with one sequencer board, and
so on.

The additional 16 register bank (the AM29705) 1is used in
order to increase the total number of registers from 16 to
32 registers. When two boards are cascaded, then
multiplexers 1 and 2 in Figure 13 will bypass the AM2904 on

the L.S. board.

3.3 THE CONTROL UNIT

In a bit-slice design the control unit performs the
function of sequencing through the microinstructions. The
microsequencer, the AM2910, 1is considered the heart of the

control unit.
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3.3.1 The Sequencer Unit (AM2910)

The sequncer chip, AM2910, has an address capability of
up to UK of control store words. The AM2910 essentially
consists of a microprogram counter and an
instruction-decoding programmed logic array on one chip. 1In
addition to decoding instructions , the PLA provides three
output signals that can be used to enable any of the three
sources of the 2910's D inputs. The register counter in the
AM2910 may be used to store a branch address that 1is used
for a subroutine call. The AM2910 has a unique three-way
branch instruction that is useful at the end of loops. If
the input test condition is true (CT), then incrementing the
program counter will cause an exit from the 1loop. But if
the test condition is'false, the loop counter is decremented
and the program branches back to the top of the loop until
the counter 1is zero, and then branchs once more to the
address specified on the direct input lines. The AM2910
makes the use of the 2909 and 2911 obsolete except for rare
applications where more than 4K range is desired. More
discussion about the AM2910 is found in [ MICKT78].

The 2910 provides a powerful set of instructions. It is
well suited for a high performance computer control unit.

The basic block diagram of the AM2910 is shown in Figure 11U,
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3.3.2 QOperation of The Control Unit

The macroinstructions are loaded into the Am2920
instruction register (IR). The operation code (op code) is
used as an input to the mapper Roms (AM27S13'S), which are
each 512%X4. Up to 256 different op codes can be specified,
since the AM2920 provides 8 output lines. Three AM27S13's
are used to provide the 12 1line inputs to the sequencer
controller (AM2910). The AM2910 receives inputs from three
different places, as follows:

1) Output of the mapping Roms

2) Output of the vector Roms

3) The branch address field of the microcode.
Depending on the test condition input to the 2910, which
comes from the condition code Mux AM2922 or from the AM290%4
(the SSC), then the AM2910 will decide whether to sequence

through or to take the branch address.

3.3.3 The Control Store

The other major block on the sequencer board is the
control store. The control store consists of 1K by 108
bits. As mentioned earlier, only 104 bits are fed to a
pipeline register which is 1included in the AM27S527. The
control store capacity can be increased to up to 4k if
needed. The need for a larger control store arises when it
18 necessary to have the microcode of more than one target

machine implemented.
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3.3.4 Condition Code Mux (CC)

Since the status, shift, and carry control unit (2904)
will be used to take care of overflow, zero, carry, and
negative conditions (the outputs of the MS 2903 on the MSS),
and produce a test signal to the Am2910, then other testing
means should be provided for the other test conditions. A
status register Am25LS377 along with a CC Mux Am2922 are
used for this purpose. The input signals to the 25LS377
will include the interrupt request (IR) signal from the
AM29 14, reset, and the FULL signal output of the AM2910 plus
any other test conditions. Both the registers and the CC

mux are controlled by the microbits.

3.3.5 The Interrupt Control Unit (AM2914)

The AM2914 is an 8-bit priority interrupt circuit and is
cascadable to handle any number of priority interrupt
request levels. It implements an 8-bit mask register to
mask individual interrupts. Only eight levels of interrupts
are implemented in this design. Four microbits are
specified for the operation of the AM2914,.

The vector output of the AM2914 is connected to the three
vector Roms (AM27S21), which are 256x4 each. The 12-bits
output by the vector Roms are fed to the D-inputs of the
2910 along with the other two input sources. The interrupt

request signal is fed to the CC mux, which in turn provides
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a test input signal to the 2910 ( the CC input ), as

mentioned earlier.
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Chapter IV
QUEUEING AND SIMULATION CONCEPTS

4.1 INTRODUCTION

In recent years, performance analysis has taken a major
role in the design of computer systems. In the past two
decades, several important contributions in the field of
computer performance evaluation have been made ZROBL81¢.
The performance evaluation of computer systems may be
divided into two broad categories. At the one end are the
empirical studies. This covers techniques such as
measurements and simulation. At the other end are the
analytic methods. This covers techniques such as queueing
models which depend on obtaining mathematical equatigné to
analyze the systen. The queueing models may yield some
qualitative insight into the system behavior, but they
cannot be trusted to provide quantitative insight to drive
the architecture of the system in the desired direction
[xuMa80]. The simulation technique suffers from the cost of
carrying out such experiments. On the other hand, the
analytic technique suffers from the time spent developing
these equations. Kumar [KUMA80] gives a  detailed
hierarchical approach to performance evaluation of computer

- 51 =
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systems.

Moreover, there exist a number of different algorithms to
analyze the performance of queueing systems. Some of these
algorithms are the mean value analysis algorithm IREISBO],
the approximation technique algorithm [SAUR75], and the
numerical methods. These mathematical algorithms are often
used to analyze large computer systems and networks. In
large computer systems, however, there 1is one factor that
plays a significant role in analysis and this is the degree
of multiprogramming. The degree of multiprogramming is not
of great importance when analyzing systems of
multi-microprocessors. The degree of multiprogramming tends
to complicate the situation even more. With a small degree
of multiprogramming the number of states grow enormously,
namely,

M+N=1
The number of states = 4-0
M+ 1
where M equals the number of devices and N is the degree of
multiprogramming. In a multiprocessing system implemented
with microprocessors, more than one processor is used at a
time, but always with one user or with one program in the
main memory executing at any given time.

In summary, the analytic models should be used to study

the effect of varying system parameters over a wide range,

while simulation models should be used for more accurate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

analysls of a specific configuration.
In this chapter the necessary background in analytic and
simulation technique are considered. These basic concepts
will provide a clearer understanding of the chapters that

follow.

4.2 QUEUEING PRINCIPLES

After the mathematical model of a queueing system has
been formulated (by specifying all its assumptions), the
model may be studied analytically in order to Dbetter
understand the behavior of the system. Under certain
conditions, a queueing system that has been in operation for
a sufficiently 1long time settles down to a behavior
independent of time. The system is then said to be in an
equilibrium (steady state) condition. At the steady state,
the following holds:

Jobs into the queue = Jobs out of the queue
The steady state 1is more convienent for system analysis.

The shorthand notation (A/B/C):(D/E/F) is used to
describe any general queueing system, where A,B,C,D,E,and F
are defined as follows:

A represents the statistical characteristics of the
customers arrival rate

B represents the statistical characteristics of the
server's service time

C is the number of the servers in the systenm, 1<: C »

D is the service discipline

E is the restriction (if any) on the maximum capacity of
the system (in queue + in service)

F is the size of the population from which the customers

are drawn, typically finite or infinite.
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A typical notation would be (M/M/1):(FIF0/o0/) where M
designates that the distribution is Poisson type. Throughout

the analysis, the above notation will frequently be used.

4,2.1 Basic Relationships

The basic queueing parameters that will be used are
summarized in Figure 15 below. The performance measures
such as throughput, utilization as a function of the number

of processing units, and the expected number in the system

will be considered. The following relationships are
defined:
Mean service time per job = E[ x ]sec/job 41

then, Mean service rate 17 E [x] jobs/sec 42

If the U (utilization) is defined as the fraction of time
the resource is busy, the throughput must be equal to the

ﬂfgrvice rate of the resource, when it is busy, times the
fraction of time it is busy, i.e.,

Throughput = T = U .(1/ E [x]) where 0 <UL 1 4.3
Thus, for a given service rate, the higher the utilization,
the higher the throughput will be. It is c¢lear that for a
utilization of 100% the throughput equals to the service
rate, i.e., 1/ E [x].

Furthermore, 1if there are k identical units of the same
resource each with a wutilization u, then the total

throughput is given as

Throughput = k .U / E [x] Jjobs/sec by
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System

The mean queue length and the queueing time are defined as
follows:
[--]
Ng = L = E( 2] :;gp(g) 4.5
where P(1l) is the prébability that the queue has & job,
and the mean queueing time is defined as
Tq = E(q] LAZOO‘, LP(2) 4-6
The mean queue ‘length (Ngq) and time Tq are related by the
well=known formula known as Littles' Rule, i.e., Nq = X\ Taq,

and it is proven in most queueing systems textbooks.
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4,2.2 Markov Process

In most queueing models made for computer systems
analysis, the Markov process concept plays a predominant
role. The customer arrival at a past or future instant does
not affect the arrival or non-arrival at the present time.
This lack of dependence on the past (and future) is commonly
called the Markovian, or memoryless, property. That is, each
event is acting independently.

A more formal definition of the Markov process 1is the
following: A set of random variables [Xn] forms a Markov
chain if the probability that the next value (state) is x
depends only upon the current value (state) x and not upon
any previous values. That 1is, the entire past history,
which affects the future of the process, is completely
summarized in the current state of the process.
Analytically, the Markov process is expressed as

PIRCE 41)= %oy [RCE) =R X(E =% oo o X(E)=x, ]
= P[X(tn+1)= xn+l x(t:n)=xn]
£ <ty & v o <E 47

The arrival time and service time distribution wused in
this study are the Poisson and the exponential distribution,
respectively. The Poisson arrival is simpler to treat
mathematically than other arrival distributions.

The state transition concept used 1in developing the

models is defined by the following formula:

=p(xl=j lxo=i) = p(x2=j |x1=i) = p(x3=j x2=i) .

Py 4-8

Oor P, . LA o =
i3=F [xn jl *n-1 1]
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It denotes the probability that a move is made from state Ei
to state Ej‘ Pij is called a transition probability. If M
is a Markov chain with n states, +the transition matrix will
be an nxn matrix. If each entry in the transition matrix is
a non-negative, and the sum of each row adds up to 1, then
the transition matrix is also called a stochastic matrix.

Thus, every transition matrix is a stochastic matrix. The

converse, however, 1is not true.

4.2.3 Networks of Queues

When a queueing system can be composed of several
interconnected nodes, and each node constitutes a complete
queueing system (i.e., it has its own queue and server),
then the overall system is referred to as a network of
queues. Burke's theorem [BURK56 ] plays an important role in
analyzing the network of queues, Burke's theorem states
that in a stable gqueueing system, a Poisson process driving
an exponential server generates a Poisson process for the
departure. In other words, if the arrival distribution for
the first node is Poisson, then the arrival distribution for
the successor node will also be a Poilsson. Another
important fact that Burke's theorem states is the following:
the steady-state output of a stable (M/M/m) queue with input
parameter X. and output parameter u for each of the m
channels is in fact a Poisson process at the same rate as X:

These amazing concepts associated with Burke's theorem
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will help us to a great extent when analyzing the data flow
model of chapter VII.

Sometimes it is necessary to work with networks of
several nodes where each node is an (M/M/m) system. The ith
node, then, consists of mi exponential servers each with
parameter H; - Upon service completion in the ith node, the
customer then proceeds to the jth node with a probability

Pij‘ The total arrival to node j is given by
N
= + P for j=1,2,...,N
Aj Yj j;li ij o J 24 k4

where is the outside arrival rate. Note that some Pij's
may be zero; this is true if node i does not feed its output
to node j.

Jackson [JACK57] analyzed this situation and he showed
that each node in the system behaves independently and can
be considered an (M/N/m) system with Poisson input X ,even
though the total input is not a Poisson process. Therefore,
in an N-node system, the state variables consist of the
vector (k1,k2,...,kN) where k4 is the number of customers in
the 1ith node including the one in service. Applying
Jackson's theorem, the state variable vector is written as

P(k1,k2,...,kN) = P1(k1)P2(k2)...PN(kN) 49
where Pi(ki) 1is the the solution to the classical (M/M/m)

system and is given by

Pk = Po (mp)/k! k<m 410
and Pk = Po (p)m/m! k>m 411
Again 1in chapter VII, these concepts will help 1in
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treating the different subsystems as nodes in a network of

queues.,

4.3 SIMULATION PRINCIPLES

One of the most costly analysis techniques is simulation.
Given a-specific model, running a simulation program will
always cost more than running 1its analytie counterpart.
Because of the limitation of queueing models, simulation can
be used in conjunction. Simulation models can accurately
model more complex structures than the queueing models can.
The flexibility associated with simulation provides thenm
this property.

In this study, the simulation 1language GPSS ( General
Purpose Simulation System) is used to simulate the models
under investigation. This language is quite suitable for
simulating queueing problems, Furthermore, it has some
advantages over the other high level languages such as
Fortran and Pascal in queue management and is more compact.
It has a built-in random number generator (R.N.G.). This
R.N.G. can be controlled so that the difterent runs made for
the different system parameters in each case are done with
the same initial random number, thus controlling the
simulation environment. |

In 2all the models under study, the basic simulation
blocks are similar. The flowchart shown in Figure 16

represents the basic simulation blocks. Except for some
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specific situations where some modification has to be made,
the skeleton of Figure 16 will be typical.

System initialization is necessary, especially if we are
using memory places to be accessed by all the transactions.
As mentioned earlier, initialization of R.N.G. 1is sometimes
very desirable. The initialization is done for more
accurate analysis and comparison of specific configuration.

In the GENERATE arrival block we control the desired
frequency of arrivals, their type (uniformally or
Poisson-distributed), the starting of arrivals, ... etc,
Note that the first operand of the generate block is the
average interarrival time (IAT). Therefore, if the
interarrival function used is exponentially distributed, the
arrival process is in fact Poisson. The terms transaction
(xact), Job, process, and macroinstruction will be used
interchangeably to represent the customer in the system.
With each xaet, a number of parameters are asscciated. Each
parameter can be used to indicate a particular function.
For example, one parametér can be used as a counter to count
the number of operands, and another parameter can have the
destination address for the result (for the data flow case).
The real advantages of the parameters are appreciated when
using indirect addressing. As the xact flow down the model
different service times (for controller, PE, etc) and the
different queues are all computed and stored in the systenm

memory for print-out. By the TERMINATE block we mean
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Figure 16: The Basic Flowechart for Simulating a Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



. 62
terminating t.hat particular xact when it passes through this
block. The START block initiates the run. Finally, the END
block will terminate the program unless other runs are
necessary for different configurations. For more

information on the GPSS blocks used, the following

references are recommended: [SCHR7Y4], and [BOBIT76]1.
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Chapter V

THE CONTROLLED MULTISERVER MODEL

5.1 INTRODUCTION

The controlled multiserver model represents an
organization of processing units in such fashion that there
is at least one PE for each operation code. Therefore, inr
executing a certain program where the operations addition,
subtraction, multiplication, and division are extensively
used, one or more PE could be allocated for each operation

code. This will increase the reliability of the system.

5.2 SYSTEM ORGANIZATION

The overall system organization can be envisioned as two
parts communicating via a communication network in a
master/slave environment. The master processing element
(MPE) is located 1in one part, and the slave processing
elements (SPE's) in the other. Figure 17 1illustrates the
principal blocks for the model. According to the notation
used in chapter II, this system could be called an SIMSD
(single instruction stream multiple single data stream)

system.

- 63 -
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MPE SPE
(PE,
& : Inst .- .
clut. Analymm :
¥] SPE
Main
Mem.

Figure 17: The System Block Diagram

The MPE can be considered as consisting of two parts, the
processing elements and the controller. The
microinstructions are stored in the control store of the
controller., The macroinstructions (program code) are stored
in the main memory, which is also part of the controller
section. The PE is responsible for fetching
macroinstrucions from the main memory and routing them to
the controllers instruction register. The op code portion
of the instruction is used to address the miecroinstructions.
The microinstruction should contain some control bits ¢to
direct the instruction analyzer (IA). Then depending upon
the type of the instruction, the IA will enable the

gspecified SPE. If the instruction 1is of the control type,
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such as jump, subroutine call, ete., then the PE of the MPE
is enabled. A more detailed organization of the system is

shown in Figure 18.

5.3 SYSTEM ANALYSIS

The performance of this model 1is analyzed using queueing
techniques and simulation methods. We will discuss the
queueing model for this organization first; the state
transition concept will be wused to derive the analytic
equations for the systen. Once established, the state
equations are used to calculate the different performance
measures. The second technique used in this analysis is
simulation using GPSS. Due to the flexibility associated
with simulation techniques, some modifications will be
performed in order to observe the effect on performance.
Basically, we are interested in adding a load unit to each

PE in order to store its microinstruction.
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5.3.1 The Analytic Model

The basic queueing structure is shown in Figure 19.

Y1
Queue lenght Contrl. - SPE
uz
Arrival = > u SPE 2
e
q .
\ .
Un
MEE SPEn
I/0 que
u
L il /O
u

Figure 19: The Overall Queueing Structure

Clearly, it is not an easy task to analyze the model of
Figure 19. Due to the complexity of this queueing model, we
need to make certain assumptions. These assumptions will
serve in easing analysis of the system without getting down
to the fine details. As 1is generally ¢true in queueing
models, simple models of a particular system will not give
erroneous results in comparison with more complex models for
the same system [CHANS81 ], The following facts are true for

this system:
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1. One job is executed at a time, i.e., where the master

PE is busy serving a job, then this job will have the

priority of getting the attention of all the
processors (nonpreemptive).

2. The service time of the slave processors are measured

and the overall average execution time is found to be

1 n
E(U) = eme)> pi

where ui is the service time for each of the slave
processors, and n is the total number of PE's ( this
value will be used in the simulation case).

3. According to the analysis, only one SPE is enabled at

a time. The slave processor will only perform one
function, and while the SPE 4is performing that
particular ALU function, the controller can not deal
with the next macroinstruction.
Due to the overlapping between the operations of the SPE's,
then each SPE sould have its own status, shift, and carry
control unit, (AM290U4). This is the modified PE of chapter
III.

The following assumptions are made for the queueing model
so that the analysis can be carried out with less hardship.
First the I/0 device can be neglected, because the
probability of executing an I/0 instruction is always lower
than the probability of executing any other instructions.
Therefore, the error due to this will be negligible. The

second assumption made is the possibility of combining the
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service time of the controller with that of the SPE, This
later assumption is justified by the following fact: In
order for each SPE service time to occur, the service time
of the controller (uc) must occur. Therefore, (uj+ug)
(where u, stands for the service time for SPEi) is
implemented. The model after these simplification will
reduce to the one shown in Figure 20. The probabilities p;

through pn and pd

| uptue

Queue | v2tue

Figure 20: The Simplified System Model

can be estimated by using a typical program that uses all or
most of the functions (that is the SPE's).
This system (for the moment) can not be considered a

truly parallel system, for not all the SPE's can be occupied
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at the same time. More precisely, as long as the MPE's
controller is busy serving one SPE, then other SPE's can not
serve the waiting insructions. This later fact
differentiates this system from a normal multiple server
system, and can be considered a restricted (M/M/n):(FCFS/c/w)
model. When using simulation we will remove this last

restriction and compare the results.

5.3.1.1 State diagram derivation

Initially the system will be empty, i.e., at state 0. As
the first microinstruction arrives, depending upon the type
of operation, Add, Sub, ete., a particular SPE will be
selected. If for example the operation is an add, and the
probability is Py then the next state in the state diagram
is @ The notation is interpreted as follows: f
instructions are in the system and SPE~-g 1is busy executing
it. While in state @ and another instruction arrives, the
next state will be @ , Lil.e., 2 instructions are in the
systen, and the one being served is using SPE-2. Now
suppose a service completion occurs while the system is in
state (::) then we will go to state <::) where i=1,2,...,n.
Depending upon the probability (pl,pz,...,pn) the next state
will be decided, e.g., 1if the probaility is Py then the

next state is (::) as shown below.
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)

u2p3

u2pn

The complete state diagram is presented in Figure 21.

5.3.1.2 Derivation of the state equations

We will derive the equations for the general case.
Afterwords, some numerical examples will be wused to
illustrate the results. Let n be the number of PE's; and ¢
be the capacity of the system. The rate balance techniques
[KLEI7S5a] as pointed out in chapter IV, states that the flow
rate into a node must equal the flow rate out of the node.
This prineiple is applied to each node in the state
transition diagranm.

For state Po:

A = u
Po Pll l-l1+ Plz U2+ e ot Pln n 5«0

and for states P11,P12,...,P1n we have:

= 5-1

+ = 5-2
Po APZ P21 ulp2+ P22 u2p2+...+ PaninPZ P12 (A +142)
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P Ap +P + +o oo = A+ 5-3
o pn lp P ”zpn Pont npn Pln( un)

21 22 2n
rearanging equations 5-1, 5-2, and 5-3 ,

= 7\ - A 5-11
Py Myt BogtyRytee oty Wby Pl (A+u)-p Py
A - 5=5
BopMiPat BogtoPytee By Hipy = By (A4 )P A p,
= A P A
1321“1?:{’- P22“2%4"''.*”I“Znunpn Pln A+ un) Po LN 5-6

For states P21' ’P22 yeeesPy, Wwe have

= +A
AR Ryt Pty k By U Pyt PaghPy T By (M) sy

lP +...+ P

= +A
+Pa Pyt Pyl ot 3,0-1%0-1P2" PapPaP2 = Fpp (M ¥ ) 5.8

u 4P, M = 5-9
Py a-1¥P31"1Pn-1P 32" - P53 pe Yp-1Pn-1P3n " nPa1
A
P2 n—l(un-l+ )
A u = Bo4A -
P +P31 lpn+P32u2pn+'"+P3,n—1un-1pn+P3n afn P2n( n ) »-10

Similarly, we can derive the equations for P31 cee P3nup to
Pcl ese Pcn using the same procedure.

Generally, it is possible to write the above set in a more

compact form,

P(u+X)=P7\p+p $ P, u 5-11
3 ji_
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where j=1,2,oou’n )

n - .
Pag AF ) =By g2 oy f\:—} P, M 5-12
whel‘e k = 2,3,...,6-1 and J = 1,2,-00’11
and,
P,= (M w)P__, 5-13
<3 3 C=i,]
The above general set of equations can be used to find
any state probability. It is evident that the set is a
recursive one. Due to the symmetry in the state
diagram, one is encouraged to take advantage of matrix
algebra, Consequently, by converting the above into
matrices and rearranging we get:
fulpl HaPy « o+ WP rP21 Fk+un 0...0 P11 P,
MiP HpPy v - WPyl | By R I E P
12 2
. P 5=14
| “1Pn ¥2Pp ¢ ¢ unpn‘ _PZnJ | 0 0 MU -Pln @n
"L P, MaPy + » « H_ oD pT'PTuH\O...OP'.PW
171 "271 n-1"1 n'l 31411 21 11
L A W N ol |7 | RS SR YY B RSV
. AL
W.P__ NP wo.p . up_ P .+ P 5-15
1Pn-Y2Pn-1 n-1Pn-1"aPn-1|}" 3nf] - n-1 an |Py 4
[“1Pn M2Pp. . . Fpe1Pn HoPn de | HyA PZqJ .Pln J

For convienence, let us make the following assignments,
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WPy WPy » v v Py

WPy WPy v -+ Py
let A= * an nxn matrix

biPy ugPy vt P

ul+x 0 .
B = 0 u2+A 0 an nxn matrix
i 0 0 un'l"x.
and
A 0 . e 0
A 0
S R
0 0o . . A

where [I ] is an nxn identity matrix. Furthermore, at this
point it 4is also necessary to define the U and P vectors.
The U-vector (UV) is the service rate vector and is given
as:

UV:I”I"Z. . .“n]T

whereas the P-vector (PV) is the probability selection vector
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and is given as:

er
[P P, P

PV = . nl

The A matrix is then found by multiplying two matrices,

where the first is formed by the elements of the P vector

(PV) and the second is diagonal and is formed with the

elements of the UV.

r : 0 . . . 0
pl pl . . . pl ul 1
p2 pz . . . PZ 0 Uz hd . 0
A=} - ) X
L Py Py ¢ Py \.0 0 ) un_
The B matrix is formed as follows:
I 17 . . . 0]
A0 . . . 0 My 0
0 0 Hy .
B = ) . . X . .
! 0 0 A b LO 0 un

where the diagonal matrix A is of size nxn. For the rest of

the states, up to Pc]_ii=1,...,n the set of equations will
bt X
look 1like Eq 5-15. And finally, for states %ﬂ iz1,.04,y0
uchl APc'lolw
uZPCZ ch-l ’ 2
) AP
LunPcn ] c-1,n |
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or
(2.1 [wo.. .07 .
Pe2 O - 0 Fo-1,2
T | sors
l.Pc3 4 .0 0 ' My fc—l,Z_

Returning to 5-14 and 5-15,. and solving for the state

probabil;ties Pij's s Wwe obtain the following general

results:
- \
- B r -
(Pn ( a P1
912 4 P22 P, g
o R I I 5-17
.Pln _Psz -pndJ
N\
o / . o ﬂ
P, Py 11
P22 -1 F32 12 S
. = [B ]qA 1 1 + [L] . 5-18
LPZn i Lp3n J .Pan
\ V4
- / P s B -P -w\
FPC_1, 1 Pa c-2,1
P
Pe-1,2 N P2 c-2,2
. = (8] QA ] + L] ) >-19
_Pc—l,n_ _Pc,nJ ! C“Z’“JJ
\
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-1
- r - -
rPcl H o . 0 Pc—l,l
PC2 0 By oo e 0 Pc-1,2
. = A ° . . 5-20
_ch -0 0 un_ -Pc-l,n ]

where the matricesfA}] , [B], and [L] are defined as above.
Now, the set of equations 5«17 through 5-20 can be solved
recursively. In Aépendix A we will show the solution for
the case n=3 and e¢=3. The dimensions of the above matrices
and vectors depend only upon n, whereas ¢, the system
capacity, has no effect. The role that ¢ plays is the
quantity of the P vector, 1i.e., we will have ¢ P-vectors
each of dimension nx1. Note that even after the solution

for .« . %AT is found, equation 5-0 can not be used

P.P__.
11712
to compute Po, since one equation of the set is always
redundant. Instead, we could use the normalizing relation:
n
P = 1
ij 5-21
i=0 j=0
By inspection we see that it is not possible to have the
following states:
since %o = 0 for i=1,. . .,c (i.e., 1 xact's are in the system
and none of the SPE's are busy.)
and Poj= 0 for J=1,. . .,n (i.e., the probability of the
system being empty with a proce-

ssor busy.)
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and finally Poo = Po

Then equation 5-21 reduces to

cn
P + 3 3P, = 5-22
=1 =11

where 2 3 Pijare in fact the column vectors we solved for
1)

earlier, and are in terms of Po

[o n
P=1/(1+3 3 P') >-23
° i=1 j=1 13
where Py;= P, Py, . The utilization is found as
. c n
- 5-24
baye = (2 2 P! x100
SYS 4= 4=1 1

where P1ij = Po Pij.The utilization of each SPE 1is also

found:

PkPE = (Plk + P2k + P3k +.. .+ Pck ) x 100

-2
=(5 P, ,) x 100 °=25
=1

for k=1,2, ... ,n

In general, the expected number in the system is defined

as
n

Nsys = L = 2 nPn
n=1
where Pn is the probability of the system being in state n;
and Nsys signifies ©both the transactions waiting and in
service. In our case the expected number in the system is

not as obvious as in the above for the probability also

depends on the type of service. Consequently, the expected

number in the system is defined as
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N = 1x( Pll +P12 +, .. ]+ 2x[ P +P +. . . 4P I+ 5-26

sys 21 22 2n
ces + . e
*o.ot cx[Pcl Pc2 + +Pcn]

In a more compact form Nsys is given as

I 5-27
Nsys -g. {n Z Pni}

i=1
where n is the number of PE's and ¢ is the system capacity.

The throughput (T) is found,

T = psys . (3uV / n) Instruction/unit time 5-28

and the throughput for each SPE is also found by,

Topp = ( 0 PE) - (UV [k]) 5-29

k= 1,2,...’n

The mean queue length is given as

Nq =E [L ] = O[P, +P_,+...+P1ln] +1[P _+P _+. ..+P ]+...

11712 217 22

(e~ 1) [P Pt P ]
}: (1- 1>Zj Py, 5-30
i=2

The average instruction response time, Tw is equal to Nsys/) a

where Nsys = Nq+ Ns

and \a

the actual arrival rate

Bl
x [ -jZ_lpcj ] 5-31

where ZP is the probability that the system is not full.
3=1¢

The average number in service, Ns, is equal to n.E [PsyJ and

E [P gpgl = P FE (Z. Z: ik)/ 5-32
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n C n C
Ns = n. (2 Puldim =30 2 R 5-33
k=1 i=1 k=1 i=1
From Eq 5-30 and Eq 5-33, N i3 found,
S o) 0 3
N = ( (i-1) P,.) + P
sys = e R w=s ey 2
let k=j c 2 t
N = i-1 P+
n c. .n
2P, 2 L (@ R+ R )
-1 i=2 j=
)
P+ i.P
gil W= 4
[o] n
Nsys = Zl Z 1. Pyg 5-34
= J= .

Equation 5-34 confirms our result obtained in Eq 5-27.

Consequently, the average response time is found,

C n n
Tw =(Z 2_: Le ) A -g‘, Py ] 5-35
=1 3=1 j=1
and the average time in the queue, Tq is computed as,
C n n
Tq =N /A =(3 1) 3B .1 /A(1-20P 1 5-36
LI T =1 4 =1

5.3.1.3 Solution of the analytic technique

The previously derived state equations require a few
matrix multiplications and inversions. For example,
equations 5-17 through 5-20 mnust be solved recursively,
starting with the 1last equation 5-20 and working up toward
5-17. When the vector| ii] i is found it will provide the

results in terms of Po. Again, working down toward equation
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5-20, the vectors [P,;] through [P ;] are found, and all are
in terms of Po. In Appendix A we illustrate the above
discussion with the solution of a numerical example. APL is
ugsed to solve the system for higher orders. This language
provides great flexibility when working with matrices. The
interactive nature of this language has encouraged us even
more. The algorithm used follows exactly the procedure

above. The program listing is given in the Appendix B.

5.3.2 The Simulation Model

The simulation model analysis is a good supplement to the
analytic model. The statistics collected in a simulation
run should somewhat agree (or follow the same direction)
with those obtained in the analytic case. Simulation models
‘in general are used to observe more specific system behavior
to variation of certain system parameters. The language
GPSS is wused for the model simulation. With simulation,
however, we can relax some assumptions that are made in the
analytic case. For instance, the composite service time of
PE and of the control unit (used in the analytic case) can
be separated without much complexity. The later attribute,
will provide us the capability of measuring the CU
statistics independently of the PE's. As it was pointed out
earlier, the price for this great flexibility is paid for by
the computation time necessary to run the simulation

progran.
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Two different model combinations will be studied with the
simulation. First, we will run the same program that
corresponds to the analytic case. Then, the CU and PE
service times are treated separately, for the SPE's, and the
necessary modification for the SPE's are made. That is,
each SPE will have its own micro-register in order to store
the current microinstruction. 1In the second run two sets of
statistics are generated, one for the CU and another for the
SPE's.

The corresponding analytic model for the second case is
very complex and finding the analytic equations is extremely
tedious. We will not derive the mathematical equations, but
instead will set up the model. However, by applying the

. same technique implemented earlier, the state transition
diagram i1s produced, and 1is shown in Figure 22 for n=3 and
system capacity of ¢. As can be observed the level of
complexity increases even more for a slightly higher n. In
order to provide a feeling for this complexity, the
sub-state transition diagram 1is presented in Figure 23 for
the case n=5,

where n<k<ec and number of states in Figure 23 = i(?)
this is true for every n<k<e. =0

The total number of statess 1+(1+N)+(1+2N) +....+(1+(N~1)N)

con N
and < >= y!
i 1T (N-1)!
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level 0O

level 1

level 2

level 3

level n

Figure 23: Sub-State Transition Diagram for n=5

The set of notations in Figure 22 is read as follows:

abe, ijk

a: the number of instructions in the system

b: 0 free}l CU
1 busy
¢c: number in service,(i.e. number of activ SPE ), ¢ is<n
i: 0 free]l SPE1
1 busy]
J: 0 freﬂ SPE2
2 busy
k: 0 freé]l SPE3
3 busy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86
The assumptions made for this model are as follows:

1. The CU cannot remain idle while an instruction is in
the queue, i.e., the n,0,m (for m<n) states are
not defined.

2. Only one instruction at a time 1s serviced by the CU.

When all SPE's are busy, and uc service completion occurs,
the instruction will remain in that state untill a pn,

1
(i=1,...,n) occurs.

In simulation, the interarrival and interdeparture times,
instead of the arrival and service rate, are used. That is,
in the analytic case X and M are used for the average
arrival and departure rate, where in simulation 1/X and 1/pu
are used. These later modifications are due to the language
requirements. The simulation flow chart for the controlled
multiserver model is presented in Figure 24, The simulation

program is given in Appendix C.

5.4 ANALYSIS OF RESULTS

Two different analyses are performed for the controlled
multiserver model. The first analysis '1ncludes both
analytic and simulation models, whereas the second analysis
covers only the simulation model. In the first analysis the

‘assumptions made for the analytic case will also hold for

the simulation case, esséntially, the CU and one SPE can be
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Figure 2U: The Simulation Flowchart for the Controlled
Multiserver Model
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busy at any given time. The active SPE 1is selected
according to the probability selection vector PV, as
indicated earlier. The analytic model is valid for n > 3,
where n 1s equal to the number of SPE's in the system.

Figure 25 shows the average utilization (for the system
and for the PE's) versus system capacity for different
combinations of\P (trafic intensity). Note, however, that
the number of SPE's in this analysis will not be critical
for only the CU and one SPE are active at any given instant.
The average service time is found by 1/(uc +uSPg. For
higher \P’the utilization will also be higher; this 1is
evident since the system remains idle fewer times for higher
QA Figure 26 1illustrates the throughput as a function of
the system capacity. The utilization obtained via the
simulation method is 11% higher than the one obtained by the
analytic method. As Q/approaches unity, the gap between the
analytic and simulation result decreases, as shown in Figure
25. Tables 1 and 2 show the utilization of individual SPE's
for the case

PV = [0 0 0.04 0.05 0.06 0.1 0.15 0.15 0.2 0.25]
Different selection probabilities can be implemented and
studied if desired. Figure 27 represents the utilization of
the SPE and the system utilization for the equal probability
selection vector, i.e.,

PV = | A B RS B, B BRSSP IS I I

For higher number of SPE's, the wutilization, hence the

throughput of each SPE will decrease, as expected.
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TABLE 1

The Utilization of Individual SPE's ((/=0.616)

PV = [0 0 0.04 0.05 0.06 0.10 0.15 0.15 0.2 0.25]

- Simulation "dnalytic

c=5 c=10 c=15 c=20 c=5 c¢=10 c=15 c=20
1]0 0 0 0 0 0 0 0
210 0 0 0 0 0 0 0
315.7 4.6 1.2 2.9 3.82 3.98 3.99 4.0
4 13.5 4.3 2.9 1.7 4.7 4.97 4.99 5.0
5 13.1 5.0 9.7 4.1 5.72 5.96 5.99 5.99
6 110.1 7.5 7.0 8.1 9.54 9.946 | 9.99 9.99
7 115.1 16.1 16.8 13.3 14.3 14.9 14,99 § 15.0
8 113.4 20.8 12.9 17.7 14.3 14.9 14.99 | 15.0
9 |22.7 12.3 17.9 23.3 19.07 | 19.98 | 19.99 | 20.0
10]26.1 28.7 30.5 28.0 24.0 24.87 | 24.98 | 24.999
Z 99.7 99.1 98.9 99.1  95.4 99.46 99.93 99.99

The second case 1is analyzed by simulation only. As is
shown in section 6.3.2, for such a case the analytic
technique becomes very complex. In this analysis, we
provide a buffer unit for each SPE, so that it will store
its current microinstruction, thus freeing the control unit
for other SPE. The current microinstruction will be loaded
to the next SPE provided it is idle. The system can even
become more efficient (as well as more complex) by providing
each SPE with its own queue. This last modification is

beyond the scope of this dissertation, and will not be
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The Utilization of Individual SPE's @P&1.5152)

PV = [0 0 0.04 0.05 0.06 0.10 0.15 0.15 0.2 0.25]

Simulation Analytic
c=5 c=10 c=15 c=20 “47 =5 c=10 c=15 c=20
110 0 0 0 0 0 0 0
210 0 0 0 0 0 0 0
3§3.1 1.4 0.9 0.9 2.54 2.65 2.70 2.66
413.1 2.0 1.4 1.4 3.17 3.314 3.33 3.33
512.0 3.7 2.7 2.7 3.81 3.977 3.997 4.0
619.8 8.5 10.4 10.4 6.35 6.63 6.662 6.78
7111.2 8.5 8.6 8.6 9.52 9.94 9.992 9.99
8110.3 10.1 9.7 9.7 9.52 9.94 9,992 | 9.99
9112.2 18.7 20.2 20.2 12.69 13.26 13.32 13.43
10 16.0 18.4 20.0 20.0 15.86 16.57 16.65 16.66
2 67.7 71.3 73.9 73.9 63.46 66.28 66.62 66,66
TABLE 3
The Total Throughput of the SPE's
P¥ =[ 0 0 0.04 0.05 0.06 0.1 0.15 0.15 0.2 0.25]
‘Simulation Analytic

2.2

c=10 c=15 c=20 c=5 c=10 c=15 ¢=20

0.00297]10.00297 |0.00297110,00286§0,00298]0.00300{0.00300

0.616
0.00430§0.00440}0.00440510.0038010.00398}0.00399 }0.00400

discussed here.

An improvement

is achieved

in the

SPE, as illustrated by Figure 28.

utilization of

92

each

As the number of SPE's
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(n) increases, the SPE utilization remains somewhat
unchanged, or varies very slightly. Comparing the graphs of
Figure 28 with those of Figure 27, the improvement is
evident. For example, when n=10, the improvement is between
300% to 400% higher than that of the first case. The total
system throughput is also given by the graphs of Figure 29.
The average queue length remains practically uniform for
each system capacity. Figure 30 illustrates the average

queue length for ¢=10 and 30, as a function of n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

—
_—
- ~~
(9] =
- “
™ =
\n ] °
coco - o
SN C - o °
M- N - © i
1t
nonononga l " M
U L vu =
v<aa - 3
o~ 3 =
v - (N\ a
= 4]
~- (=} - ]
— ] A o
)
]
o |l P o -
& o~ L
o
- N
al
- -
ot
&
- o
3]
o
0
)
K]
£~

¢ -
[T . | I

5 10 15
Figure 28:

[}
UOT3IBZITTIN A4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

L
L
-
i
S~
P
- o
© n - =
c o (9 b
N o~ °
-l o«
o o g
m - °
v A L H o
= vy U
_— ~N 2 o
E =
od = =
2z fxe
Q St
- ™ - ©
=]
" 8 - a
U ] Q
o~ 3
=
- I
)
- =
(]
- <
=)
‘E " B
Ll
g
)
- NL]
n
Au— %
-_
oS (=}
- (4}
)
= £
pa— h:o
-
- L“
o n
-y
———
-—
L 1 1 [ L1 '
1<)

~F
0007 x 3ndysnoayg

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



97

-‘A
i 0
a L mm
v -
o ©
S o~ o
~ -1 0
¢ @
lUn-t -;
A 2 o]
i o~
o =
c = ~
(a2} - -

20

1

The Average Queue Length as a Function of n

, o
M
_ ®
| 9
3
— &
oy
o {x
y s}
-
-
b o 4 e 1 Y U T AN U O N N B
Q

o =) 8
~ yisuan ar‘?an‘o agdeaaaAy

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter VI

A PROGRAMMABLE ARRAY MODEL

6.1 INTRODUCTION

In array processing systems, a number of identical
processors are used. The manner in which these processing
elements.( PE's ) are connected differ from one system to
another. Some important array models are presented in
chapter II. As an example of an array system, we propose
the array model discussed within this chapter. The need for
array processing architecture arises in environments where
speed and throughput are of great importance to the extent
that cost will not be very critical. Array processors are
highly specialized systems. An example of an array system
that uses ©bit-slice elements is the Purdue multiprocessor

(PM U4) system, [BRIG79 ],and [ BRIGS2].

- 98 -
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6.2 SYSTEM ORGANIZATION

The System can be configured to consist of two prineciple
blocks:
1. The control block section.
2. The processing block section.
The control block consists of a complete bit-slice machine,
i.e., a control unit and a processing element. A number of
identical ‘processing elements constitute the processing

block. Figure 31 illustrates the organization of these two

blocks.
Instruction
Stream
a] Control
PE Control Store
‘ I The Control
e > e @ W ®  oE—— .BLOCk
Main ;' CE———
Mem.
3 L_L T,
a
Th;-p;o——-- PEn|. ... PE 2 PE 1
cessing ;
Block toe ! J%ata stream
L.M. L.M. Local
Mem.

b 3 4

Comm.'
etwot"

Figure 31: A Block Diagram of the Systen
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The control section contains the control store which serves
aé the main supplier of micecroinstructions to the processing
elements PE-1 through PE-n, and to the PE of the control
section. The intercommunication between the two sections is
controlled by the microcode. We will explain this

organization in more detail in the latter sections.

6.3 HARDWARE ARCHITECTURE

As it was pointed out in the last section, the NMSU-MBSE
system consists of two sections, namely, the control unit
and the processing elements. We now go through some more
detail to explain how the hardware modules are configured
and how the interconnections between the different modules

are performed.

6.3.1 Processing Elements (PE's)

The modified ALU slice developed in chapter III (Figure
13), will be used in this array organization. Since the
control unit will be used to serve a number of PE's, and
furthermore, since each PE has its own data stream to work
on, then each PE will require 1its own status, shift, and
carry control unit. Thus it is necessary to use a separate
AM2904 for each PE.

The modular concept could alsc be applied here, since

more than one board for each PE can be used (e.g., a 16=bit
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PE). Thus, some means of communication and shift
Justification must be made. The multiplexers 1,2, and 3 in
Figure 13 are implemented for this purpose. As a result, the
overall system 1is 1left unchanged with regard to the
modularity. A variable length PE can easily be implemented.
This latter feature provides an adaptable array system that
can be used in applications where the word 1length is quite
long, such as in 1image analysis and pattern recognition
application. A simplified PE block diagram will be used
from here on, and 1is given in Figure 32. Whenever the
diagram of Figure 32 is used, it should automatically imply

Figure 13.

6.3.2 The Control Section

The control unit controls the activities of the whole
system. It has the necessary microcode to emulate a
specific machine. By the same token, different microcodes
could be implemented to emulate different microprocessor
systems or even new ones.

The microprogram store width will be slightly different

from that of chapter III. Each microinstruction, in
addition, should have a field specified for the
intercommunication purposes. Furthermore, some microbits

should be assigned for the selection of the various PE's,
For an n PE system, we require n+1 bits for this selection.

Since two different sets of microinstructions are
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Figure 32:

implemented, i.e.,

means of distinguishing between them

instructions for the

subroutine call, ...),

Jump,
in the PE's section are

ooc)o

sub, multiply,

consist of three principle fields:

u~code
A Data Bus
F
SSC MDR
Am2904 ™ Am29]7
A_R
A
SIO SIO
»M010 QIO
ALU DBL‘—*
Am2903's
Carry = MAR
Am2902 Am2920
Add.
Bus

one for the CU and one for the PE's,

CU are of the control type

for data manipulations (i.e.,

The micro instructions
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The Simplified PE Block Diagram

some
is required. The
( that is,

whereas the instructions used

add,

are shown to

THE INTERCOMMUNICA-
TION FEILD
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Figure 33 illustrates how these fields are arranged.

ALU CONT.

2903 2920 2920 2910 2914 2920 2904 2922 2910
ALU MDR " MAR BranchInt IR SSC SMux Seq.

@) Jcer Jesntanlcrojesolenlesn]cr)
INTER. NETWORK CONT.

2925
Interconnectio Mux. Intercon. Network Control Clock

1+log n l 2( n-1)) | (10) I( 4 ) |)

Figure 33: The Microinsruction Fields

A detailed system organization is presented in Figure 3lL.
There are two means of communications in the system: the
intra-module communication, between the processing elements,
and the intercommunication of the controller with the
processing elements. An interconnection network is used for
the intra-module communication. Figure 35 shows this
interconnection network for the case where the number of
PE's and the number of memory units are equal to four. This
network is essential for the vector operation case discussed
in section 6.5 . Each PE can have access to the memory of
the neighboring PE. The interconnection network is
controlled by the microcode. Each subunit in the network
takes two control bits, one for each direction. The total

number of microcode bits designated for the interconnection
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network is equal to (n-1) x 2 , where n is the number of
PE's (also in this case the number of memory units equal to
n, i.e., each PE has its own local memory).

A multiplexer is used to interconnect the PE's to the
controller. Some microcode bits are designated to control
this mux. For an n PE system the following will be true:

1. Number of microcode bits for the Mux select lines

equals

rlogzn] + 1
where: [logzd]bits are used’ for the select and the 1
bit is used for the control line.

2. For ann PE and an M bits data bus (M-bit machine),
then the number of multiplexers = M each of n to 1
type.

Figure 36 illustrates a system of 4 PE's and 8-bits data
bus.

As a final note, we compare the two interconnection
networks of Figure 37. In each case the number of PE's and
memory units are equal to 4. In part a, each PE c¢an have a
direct access to any of the memory units. This means of
communication is a costly one. The number of gates required
(G) is found as follows:

Ga = 2n w i
where w is the width of the data bus. The G for part b (the
one implemented above) is found as

Gb = 2(n-1)w ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—

105

cation Mux.

Figure 3U4:

The Complete System Organization
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Figure 35: The Interconnection Network
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It is <clear that the second network is far 1less expensive
than the first one. For a data bus width of 8-bits, Ga =
256 gates, whereas Gb =48 gates. Furthermore, for bit-slice
applications the second is more convenient to use for it
takes less microcode bits to control. More specifically, in

2

the first case it takes Ga/w 2n = 32 bits, and in the

second it takes Gb/w = 2(n-1) 6 bits. However, the main

disadvantage with the second is the delay associated with it

when implemented in large networks.
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PE 4 PE 3 PE 2 PE 1
Interconnection
Network
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Figure 37: The Two Interconnection Networks
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6.4 ANALYSIS OF THE ARRAY MACHINE

The array machine can be viewed analytically, as in
Figure 38. The incoming jobs pass through the queue and
wait wuntil the controller is free. After the required
number of PE's are available, then they are allocated and

the contrul unit is employed to that particular job.

)\ \ c-1 CU
—l >
le— J
P 7\

PE Resources

Figure 38: The Queueing System

Each job selects a number of PE's equal to X; where X is a

random number ranging between 2 and n, i.e.,

1 X:;n
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6.4.1 The Analytic Model

The model of Figure 38 is first analyzed analytically.
In order to analyze this system, we need to derive the state
probabilities. The state transition diagram for this system
is somewhat similar to the one of chapter V except that
all of the PE's have the same service rate since they are
executing the same microinstruction. Figure 39 shows a
reduced state transition diagram for n=3 and system capacity
¢. Hwang and Lee, [HWAN79] and [ HWAN81], have analyzed an
array system with a multiple control unit for the PM4 system
[BRIGT9Y] .

It is very important to notice the dissimilarity between
this model and that of the modular organization presented in
chapter V. In this model the probability vector [PV]
specifies the probability of selecting only a particular
number of PE's ,i.e., allocating 2,3,...,n PE's to the job,
whereas in the other model, [ PV ] specifies the probability
of selecting only one type of PE, i.e., ADD, SUB, MUL-PE,...
ete, by the instruction. We will not present the details of
obtaining the state probabilities since the method 1s very
similar to the one done in chapter V. Instead, it suffices

to give the general final form:

n
Pos(ddu) = + -0
2 2%u) = Podpy +upy 3 Pyy 6
for j=1...,n
n
Prg( A +#) = Py g M4 Hp 3 P 1 6-1
1=1

for k=2¢-¢,c-1 and j=1,...,n
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and finally:

ch = (A/yp) Pe-1,4 6=2

for J=1...,n

As before, it is convenient to use matrix forms for the

calculation
. - o ﬂ .
P]_]_ Pa1 PIWW
) S [B ] [A] : +APO[1] : B 6-3
P P
] ln‘ L L Zn. Lpn ).
- / . s )
rP21 P31-‘ 11
P22 -1 P32 12
. =[B] <[A] . +[L] S 6-4
LPZn 3n L In
i L - /
/ _ \
c-1,1 1] P21 1
Pc-l,Z o’ Pc,2 Pc-Z,Z
. =[B <[A] + [L] > 6-5
1:‘c-l N L Pcn ch -2.n
- - -~ >~ -/
.P 1 'u 0 0’-%P
el G c-l,ﬂ
2 | L 0 Pc—l,Z
. =A]. . 6~6
P Lo 0. . ufir
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where the matrices A , B , and L are defined as:

UPl uPl . . . 11P1
Py MP L an nxn matrix
A = . )
| WP HPp . . . Mp ]
A +w 0. . . 0 |
0 A+
B = : c . an nxn matrix
0 0. LA+
L J
T2 0 . 0]
0 0
L =2 [1]= . . . an nxn matrix
L° 0 - . Y

All the state probabilities ( 4 1i's) are in term of Po:

[(Pryrg BlPygegde v v 5 lByrgl] 6-7
Then Po is solved for as before
C n
P +5 P, =1 6-8
o g
>3
P [ 1+ 2:; P:t]=1 6~9
o =1 = ji
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-1
= + P -
o= (1 %é 6-10
where Pij = Po P'ij . Therefore, Po is now known and can

be used to find the P'ij.

Then eq. 6-7 becomes:
‘ 1 . 6=11
(1 Pl,i’s]’[ 2 i's]’ ..., [P c. i,s]]
from Eq. 6-11 we can write a P' matrix which consists
of n rows and ¢ columns. In fact, the P' matrix is the state
probability matrix.
NMumber\ Number of johs
of PE's \ in the system
aslocated 3 h o-1 c
1] LN 1 v
P11 P2 Pagw o+ o Peorn Ped )
- [ ' [l t -
P o= 20 Py Pp P2 P12 P2 6-12
3 ). :
' B 1 ' [
kY P P Pk Ptk Fex
' ’ ' '
n Pln Pon ) Fn - Pc-l,n Pen /
where 1 £h £e¢ and 1 £k <£n

where Ph,k expresses the probability of the system being in

state h,k i.e. h jobs are in the system and k processors

are allocated to the one being served. In order to find the

probability of PE allocation, the P'

For example: 2 Pik
A 1i's

of k processing elements being allocated in the systen.

matrix is used quite

effectively. equals the probability

The state transition matrix 1is shown to be somewhat

complex. The dimension of the state transition matrix (Q)

is ((nxe)+1) x ((nxe)+1). In equation 6-13, it is shown
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that the state transition matrix (crossing out the first row
and column) consists of ¢ square submatrices each with a
dimension of nxn. Even for a small number of PE's, the
number of states will be high and the number of possible
transitions will grow very rapidly. Specifically the number
of states is (nxec)+1 and the number of transitions equal to

(3c-2)(nf-+ 2(n+e)+1 6-12.a
Ideally, there should be

(cn)2+2(cn)+1 6-12.b
transitions, but due to the fact that the system can go
forward to one state only, then the reduced number of
transitions (in A) is true. The number of zero (impossible)
transitions is found by subtraeting Eq-12.a2 from Eq-12.D,
and is found to be

cn(cn-3n)+2n2 6=12.¢
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Note: other than the first row and first column, all other

submatrices are of dimensions nxn and we have 02 of these
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submatrices. Also observe that the principle diagonal and
the upper diagonal are nonzero, all other entries are zero.
The utilization of the PE's is defined as:

) Expected no of PE's in the busy state

N

Total no of PE's in the systenm

where = +
] (1P 2P, .+ ...+npln)+( 1P21+2P22+ ...+nP2n)+ R

11 12
(1P ; +2P % ,..40P )
or Y = ii o 5P 6-14a
=t .., " i
i=1 3=1 -
= j -14b
PpE (1/n)§ jgi 3By
The system utilization, as generated in chapter V, is given
by
Poys (1-P0) 6=15

therefore, system throughput is

Tsys = ( Psy

The average number of jobs waiting in the queue 1s given

S) X

by
N =E[L]1=07P,, +1,P, , +2P, , + ..+ (¢c-1).P ,
q [q] 1j 23 33 (c=1) cj
J=1,|o.,n
i.e., n c
Nq=§: > (1-1).2,,
j=1 1=1 6-17

Note that if there are i Jjobs in the system, then, there
are (i-1) jobs waiting in the queue, The average number of

Jobs in the system (in queue plus in service) is

)1} [o

N = i.P -

Thus by subtracting Eq-17 from Eq-18, we obtain the average

number of jobs in service.
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In order to calculate the average Job response time,
Littles' formula is applied.

number in system

average Jjob response time = Tw =
actual arrival rate

T =(Nsys / Ag) = Nq N A=« Nq NRRUEN 6-19

where Aa is the actual arrival rate, and is found by the

following,
Aa = the ideal arrival rate x the probability the systenm
is not full
Aa = - + . e .
A1 [npcl P, t + Pcn] )
ra = Al 1 =37P ) 6-20
=1

n

where E:Zch is the probability that the system has a full
=1

queue and a busy group of j servers,finally, Tw is found as

n [
_(1+ (i-1). P, ) 1 -
Tw = jgl‘é 1j /(A(l-é‘ipcj)) 6-21

From Eq 6-19 we see how to obtain the average time spent in
the queue and in the systen. The above system of equations

are solved using APL, the program listing 4is shown in

Appendix D.

6.4.2 The Simulation Model

The simulation model for the array model is somewhat
similar to that of the controlled multiserver model, The
major distinction in this model is the allocation of the

number of PE for each incomming job. For an n-PE systen,
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each job is allowed to seize between two and n PE's. Note
that at any giveh instant, the single control unit employed
can only serve one groupe of PE's, and the rest of the PE's
will remain idle.

Simulation is performed on two 1levels, macro and micro.
The macro level is used to validate the analytic model. The
macro model is asscciated with the jobs in the model,
whereas the micro model is associated with the
macroinstructions execution. The macro analysis flowchart
is given in Figure 40.

On " the other hand, the micro model consists of two
segments. One segment 1is concerned with the job arrival,
and the other segment is associated with the
macroinstruction in that particular job. The two segments
work interactively. The overall flowchart for the
simulation model is shown in Figure 41.

A Poisson arrival and exponential service time
distribution are assumed. The number of jobs in the system
is not that critical in the analysis of the micro model.
However, the number of macroinstructions in a job 1is of
concern for it will have a direct effect on the performance
measure. As mentioned earlier, the controller c¢an only
serve one Job at a time, and as long as it is busy serving
that job, it will do that until completion, nonpreemptive.
The results of the analysis are discussed in section 6.6 .

The simulation programs are given in Appendix E.
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6.5 POSSIBLE APPLICATION EXAMPLES

Writing algorithms to maximize the utilization of the
array system is one of the most challenging tasks. In the
given organization, each PE can have access to all of the
PE's in the system. Clearly, this kind of interconnection
suffers from a delay problem when dealing with large numbers
of PE's.

The system described above can be used in the following
organization. Consider outside jobs that are arriving to
the system queue as transactions. A number of PE's will be
allocated to each job under execution. This is an open
network type. The Jjobs are assumed to perform vector
operation only. Each job is considered not to utilize the
full power of the PE's. In some cases, and for a particular
job, a subset of the whole PE set might be used and the
remaining PE's are left idle, thus reducing the total PE
utilization. Not wusing the full power of the system is
¢learly an undesirable drawback. This fact by itself
constitutes the major disadvantage of this kind of
organization. Two application examples that use this kind
of systems will be illustrated is detail.

Example 1:

Consider an array system that is used to read data from
several locations such as in a weather station or from
several identical sources ( satellite and radar tracking

stations). We are interested in finding the average data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



125
read in each case.

The program for doing this 1is the same for all of the
PE's (single instruction stream), but each PE has its own
data path (multiple data streams). Let us make the
following assumptions: the number of PE's in the system are
known and are even. The different data are stored in the
local memory of each PE. After each set of data is read,
the vector addition is performed and the final result is
stored in the main memory for further calculations. The
intermediate results, however, are stored in the lower
indexed PE of each PE pair, i.e. [ PEi] &= [ PEi] + PE [1+1]
for iz1,2,...,n=1. The flowchart of Figure 42 illustrates
the procedure in detail. The notation rloszM]signifies the
ceiling of log2 M ( the next higher digit that is greater
than or equal to logzM), and M is the number of elements in
the vector. Furthermore, assume that the number of
processing elements in the system are equal to the number of
elements in the vector.

It 1is noted that in each subaddition, the number of
components in the [I] vector will reduce by a factor of one
half, The utilization of the PE's is 100% in the first
step, 50% in the second step, etc. Mathematically, the
utilization can be expressed as:

Py = (1/ 31y x 100 for 3=1,2,...,log,M
where J indicates the step number. The average total

utilization is given by
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Figure 42: The Flowchart for the First Example
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logzM

¢ 2 ey )/ LogyM
j=1

M+ 2x100/k) [1-(1/2) K

= ( 2x100 / log,¥) [ 1 - (/2) (108,
where K:logzM. Comparing the above algorithm with the
uniprocessor case we notice that the array system takes log
M instruction c¢ycles, whereas the uniprocessor case»takes
(M=1) instruction cycles. Consequently, one should observe
greater significance for higher M. As an example, for a
16-element vector, the array system will take 4 cycles
compared to the 15 cycles in the uniprécessor case. The
graph of Figure 43 provides a plot for the above two cases.
Moreover, using higher M will require a higher number of

PE's, hence more complex interconnection network.

Example 2:

In this case we discuss another possible configuration in
which each PE is regarded strictly as an input channel, thus
providing a multiport input system. This application is
desirable in data aquisition environments. The same progranm
code is used to direct the activities of all the PE's. Each
data path will have its own input channel (i.e., its own
PE). In this case the number of PE's is assumed to be
fixed. This is done at the design stage since the number of
data input lines are assumed to be known. In some real time
applications this configuration 1is a typical one.

Furthermore, assume that the rate of data input is always
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Figure 43: The Uniprocessor Versus the Array System Cycle
Requirements

slower than the rate at which the processors execute the
program. This last assumption will assure the reading of
correct data. The size of the main memory should be large
enough in order to accommodate data for the desired period
of time. The readings of data and time take place in the
processing elements section. The program is executed over
and over again, each time reading a different set of data.
The microprogramming ability of the system provides the
individual control of the PE's in the processing section and

the PE of the control section. The flowchart shown in
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Figure 44 precisely illustrates the procedure discussed
above. The main and local memories content are shown in
Figure 45 and should be read in conjunction with Figure 44,
As a final note on the array system, the following
drawbacks and limitations are discussed. The serious
problem with the array system in general is that the failure
of any of the PE's will Jjeopardize the operation of the
whole system. As a result there should be a supervisor
processor that will detect the faulty PE. In case a faulty
PE is detected, then, there are two alternatives, either to
bring the whole system to a halt ( a clear disadvantage ),
or to replace the faulty PE with a standby PE. The idea of
having a standby processor is not very favorable for it will
complicate the interconnection even further. To be very
reliable, there should be more than one PE for each PE
location. The array systems are highely specialized. The
system, very often, 1is only suitable for the application it

is designed for.
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Figure 45: The Main and Local Memories Contents

6.6 ANALYSIS OF RESULTS

Two different analyses are performed, macro- and
micro-analysis. In the macro analysis both simulation and
analytic models are studied. The job as a whole is
considered as a transaction unit in the system. The system
capacity, ¢, the number of PE's, and the arrival rate are
the parameters that-are varied. The resource utilizations
and the average queue length as a functon of system capacity
and the number of PE's are the main objectives in this

analysis.
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6.6.1 Macro-Analysis of the Array System

In order for a simulation study to be reliable, it is
necessary to bring system to a steady-state condition. That
is, it is necesssary to decide the confidence interval. The
confidence interval i1is estimated by some experimental
studies. The simulation model reached the steady-state
condition in about 3000 time units, or when about 60 jobs
are passed through the system. The analytic model is valid
for n>4. The simulation results confirm the validity of our
queueing model as shown in the different graphs. In Figure
46 the system and PE utilization are plotted as a function
of the arrival rate. It is noted that the system
utilization is always greater than the PE utilization, since
the system utilization includes the CU utilization. The
average queue length is shown in Figure U47. The flat region
is where the service rate equals approximately the arrival
rate. When the number of PE's is varied from 5 to 20, the
graphs in Figure U8 are obtained. For a higher system
capacity, the utilization of both the system and the PE's
are higher. It 1is worth observing that the average queue
length is not dependent on the number of PE's. This is true
because the extra PE's introduced are also utilized by the
same instruction, as confirmed in Figure 49, Moreover, the
system capacity is also varied from 5 to 30. The system and
PE utilization, and the average queue length are computed

and plotted in Figures 50 and 51, respectively. Finally the
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total system utilization and the PE utilization are plotted
for different arrival rates. The higher the arrival rate,
the higher the utilization will be, as shown in Figure 52.

The PV (probability selection vector) used is consistent
in both the analytic and simulation study. However, the
model (especially the analytic) could be simplified a great
deal by using a PV of the form:

pv = [o0o0o ... 0 11, that is, the whole PE subset will
be allocated to the job under execution. The queue length,
consequently, will be independent of the variance in the

number of PE's.
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The state transition diagram of Figure 39 will reduce to

a one which has only the last row, i.e.,

Therefore, it can easily be treated as a one-dimensional
algebraic system. 1In Figure.53 the total system utilization
is given as a function of system capacity for different
numbers of PE. The utilization will greatly be affected by

the service and arrival rates.

6.6.2 Micro-Analysis of the Array Model

For the micro-analysis, only simulation experiments are
performed. A fixed number of jobs are assumed to be in the
system. Each job contains a fixed number of instructions.
When a job is executed it uses the same number of PE's
through out the execution period. This last restriction
will ease the analysis somewhat. The time for macro-
instruction fetech from the main memory to the IR is
designated as the interarrival time. The service time of
the control unit and the microinstruction access time is
defined as the total controller's execution time. The PE's
will have identical service time distribution since all are

assumed to perform the same microinstruction.
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In Figure 54 the system and the PE's utilization are
plotted‘as.a Function of )\ for different values of c. The
maximum PE utilization is reached when p approaches X . The
queue lengths are shown in Figure 55. For ) 20% higher than
p, the average queue length reaches the system capacity and

remains unchanged thereafter.
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6.7 REMARKS
The direct execution computer of chapter II can be
referred to here in order to compare against our array
organization. The similarity between these two systems
organizations lies 1in the separation of data and control.
In Chu's direct execution machine [CHU81] the control
processor executes tokens which are part of the control
flow, whereas the data processor executes tokens which are
part of the data flow. In our design the lexical processor
is absent. Therefore, all the program instructions to be
executed reside in the main memory of the system (that of
the MPE). However, the instruction set should have two
distinguished groups of instructions. One set of
macroinstructions is used for the SPE and another set for
the MPE. The real burden is with the controller and the
microcode. Each op code ( for SPE and MPE
macroinstructions) will have its corresponding microcode.
The data~type instructions that are specified for the SPE
units should enable the SPE and disable the MPE, whereas the
control type instructions and data to be performed by the
MPE should enable the MPE to receive the microcode and
disable all the SPE's. One bit of microcode is designated

for each PE (SPE and MPE).
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Chapter VII

DATA FLOW MODEL

Te1 DATA FLOW CONCEPTS

Data flow computers are based on the readiness of the
operands involved in the computation. Unlike the
conventional systems (e.g., von Neumann machines) data flow
system do not execute the program in a sequential fashion,
but rather, an instruction is executed or prepared for
execution when all of its operands are ready. For example,
an Add x,y instruction will initially wait in the main
memory for the operands x and y to be either defined or be
supplied as a result of execution of other instructions.
When the operands become available, then the instruction is
sent to a free execution unit (PE),.

Sequencing through the instruction of a given program is
an attribute of the von Neumann machine. The data flow
principle utilizes the flow graph method in order to envoke
the parallelism inherent in a program. Thus only those
program that are suitable for parallel application can be
implemented on a data flow machine. The theoretical ground
work for data flow computation can be traced back to 1966
[ WATS79). At MIT a team led by J. B. Dennis pioneered the

.= 148 -
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research for the realization of data flow machines [DENNTH4].
A number of systems that use the data flow principle have

been developed and studied [AGERS82 1.

7.2 DATA FLOW PROGRAM EXAMPLE

In order to illustrate the data flow program execution,

we use the following simple example:

INPUT a,b,c,d
Begin

x 1= ((a+b) = c )/( d * a )
End.

QUTPUT x

In order to execute this program, it should first be written
in data flow graph form and entered into the memory. The
memory entries consist of two main parts: instruction store
entries and initial token entries. Let us derive the data
flow graph for the above program. Developing the data flow
graph is straightforward although it c¢an be be tedious in
some instances. The graph is started with the initial
tokens, i.e., the input variables, in this case a,b,e¢, and
d. For each operation a box is defined. Adjacent to each
box an address is indicated. To each box there is a number
of links going in and out. In this example, ¢two links in

and one link out, as shown below in Figure 56.
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Instruction store entries:

Addr. Operation
A1 ADD
A2 MUL
A3 SUB
Al DIV

Initial tokens entries:

Value Lable
a -
b --
[« -
d -

The Data Flow Graph
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A3 LH
A4 RH
A4 LH
Output

Next Instr.

Addr LH/RH
A1 LH
A1 RH
A3 RH
A2 RH

Next Instr.
Addr BT
LH/RA

Next Instr.
Addr LH/RH
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Since the op code used requires two operands, therefore,
at each address we should have two inputs. Some of the
inputs are initial values of the tokens, while others are
the results of execution of other instructions. In this
simple example, we note that address A1 has both of its
operands ready, i.e., A1 LH and A1 RH, where LH and RH stand
for left-hand side and right-hand side, respectively. The
instruction at address A1 will then be ready for execution.
The same applies for the instruction at address A2.
Executing the instruction at A1 will make the instruction at
address A3 ready for execution since A3 has the RH operand
ready, and A1 supplies the LH operand. By inspecting the
data flow graph of Figure 56, we observe three levels of
executions:
level 1: Operation at A1 and A2 are under execution
level 2: Operation at A3 is under execution
level 3: Operation at A4 is under execution.
Hence, 1if the system has n processing elements, only two of
the n PE's will be used concurrently at any one point. For
this particular simple program only two processing elements
(or less) are required. However, there exist applications
where hundreds or even more processing elements are needed
concurrently. One such example is in digital signal

analysis and vector computation.
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7.3 THE BASIC HARDWARE UNITS FOR A DATA FLOW SYSTEM

A basie data flow system consists of several modules.
Each module operates asynchronously and independently of the
other modules in the systemn. Each module processes the
incoming data to its port and then sends it to the next
module in line. Figure 57 shows the overall interconnection

of a typical data flow computer [DENNTY4I.

PE 1
cony’
In Buffer
Out buffern
PE 2
N ey f_—-
L . | "
\
PE 3
l.- -
in out
In Queue Out Queue
out in
ﬂ -
Distribution Arbitration
Main
Memo-
e ‘
sl BN
‘ V1 ViSect- -
ion

Figure 57: The Basic Blocks »f a Data Flow System
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In this section selected portions of the proposed data

flow machine architecture will be examined in greater depth.

7.3.1 The PEQUE to PE Connection

The PEQUE 1is the queue that holds the ready instructions. In
Figure 58 the connection from the PE to this queue is shown.
In order to avoid the selection of more than one PE, a
priority encoder AM2913 is implemented. For each additional
eight PE's a new Am2913 is introduced. In Figure 58 we
illustrate, for simplicity, a 3-PE system. The PE's
generate a processor available signal to feed into the
Am2913. Depending on the output of the encoder, only one
set of (ai,bi) gates will be selected, which in turn enables
the data path to the selected PE. The outputs of the (ai)
gates are fed to an OR logic. The OR gate (C) generates a
low to high signal whenever any PE is available, and

provides the PD signal to the queue.

7.3.2 The Processing Element (PE)

Since the operation packet consists of the operation as
well as the destination addresses, some bits in the byte are
used for the control purposes. If the most significant
three bits are used, eight possible signals can be
generated. Table U4 defines these signals. The control

signal 000 is used for the selection of the op code. When
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the byte (or the word) has its most significant 3 bits equal
to 000, then the byte carries the op code portion of the

packet.

TABLE Y
Definitions of the Signals
Signal Function
000 op code
001 opnd 1
010 opnd 2
011 dest 1
100 dest 2
111 last byte

Byte serial transmission 1is used. The control signal 111
indicates the end of the byte transmission. Figure 59 shows
the distribution of the different signals in the PE circuit;

note that each PE is a complete bit-slice microprocessor.

7.3.3 The Queueing Circuit

The queueing circuit is very straightforward. The logic
should provide the following signals:

PL: parallel load (in)

IR: input ready (out)

PD: parallel dump (in)
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Figure 59: The PE Circuit Diagram

OR: output ready (out)
The input ready signal provides an enable input signal for
the memory buffer and the memory control unit provides a
parallel 1load (PL) signal to the queue. The other two
signals (PD and OR) are for the communication between the PE
and the queue. Whenever a PE is available, a PD signal is
generated that is input to the queue. The OR and PE

available signals will route the data to the specific PE.
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The Am2812 FIFO chip can be used here. It is a 32-word x
8-bit FIFO and is expandable in both word and bit
directions. The queueing circuit between the PE and memory

is constructed in a similar fashion.

7.3.4 The Memory Section

The memory section should contain the necessary logic for
the selection of the ready instruction and the distribdbution
of results from the previously executed instructions, thus
forming the most complex part of the system. A complete bit
slice microprocessor is used for this control. 1In fact, khe
memory section is considered the central control wunit for
the whole system for the instructions are initiated and
maintained here. We will discuss the main activities that
take place in the memory section.

The main memory blocks can basically be represented by
the blocks of Figure 60, It is assumed that the memory
contains instructions of a given program. Moreover, the
program is assumed to contain some degree of parallelism.

The instructions and the tokens reserve two memory

sections of the form:

A op code}1st opnd |2nd opnd|Next Inst.}Next Inst.]opnd
address 1 |address 2 |entr

B Value Inst. address 1 | Inst. address 2

The follewing steps take place:
1. First start by pointing to address of the 1st opnd in

A and latch it to a register.
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Figure 60: The Basic Blocks of the Memory Section

2. Jump to the first address in B and sequence through
all the addresses in B. In each case try to match
instruction address 1 and 2 in B to the address
latched in the register in step 1. If there 1is a
match, the value at the address 1in B should be
latched to address in A, decrement the counter by 1,
and check the operand counter against 0. Do the same
for the second operand,

3. Repeat steps 1 and 2 for all instructions. Note that
the above steps are only done once, 1i.e., at the

beginning of the program execution since the value of
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tokens are only defined in the definition phase.

4, After performing step 2 and (or) step 6, whenever the
operand counter is equal to 0, the instruction should
be passed to the PE queue (PEQUE) by enabling the
buffer.

The path from the PE to the memory is done in the
following two steps;

5. The result is passed to the distribution network
queue. When a resultant packet arrives (which
consists of two parts: result and address), thé
result 1is placed in the iﬁstruction cell whose
operand address (1st or 2nd) agrees with the
destination address in the result packet.

6. The control unit in the memory should deal with the
incoming packet and place the value in the proper

address. Repeat step 4 if necessary.

7.4 THE DATA FLOW MODEL

In this section we will apply two analysis techniques to
the data flow machine., We start by configuring the queueing
elements involved in the model construction. The
illustration shown in Figure 61 basically represents the
desired model. To simplify the discussion for the moment,
the model 1is divided into three different subsections,
namely 1,2, and 3 as indicated by Figure 61. By inspecting

the model of Figure 61 , one can realize the complexity
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involved in analyzing the system analyt;cally. For this
kind of queueing networks, however, one usually pursues
simulation rather than analytic techniques. Furthermore, by
treating the whole model as a number of gqueues, one then can
apply standard queueing techniques to each section
independently of the other sections, as pointed out in
chapter IV.

The network 1is represented in a nodal form by the

following:

(1-(p+q)n5

7

2
and each node can be treated independently. The nodes used

here are of mixed types. Node 1 is an (M/M/n) system, node
2 is an (M/M/1) system, and finaly node 3 is an (M/M/1)
system with feedback. of all the three independent
sections, we will only derive the steady state (balance
equations) for section 3. The results for sections one and
two can be obtained without muech difficulty [KLEI75a],

[wHITT75].
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The PE section

Queue
2 The Result The process-
distribution « ing elements
section. > S_écthI.‘l.. I -

-
i (1-(p+q) )3

T =
— °
X The main memory

P‘gq section.

'

Figure 61: The Queueing Model of a Data Flow System

T.4.1 The Analytic Model

Deriving the state equations:

As mentioned -earlier, only the state -equations for
section 3 will be derived. We assume the system has k
instructions (transactions), i.e., a full system. The

following parameters are of interest:
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The system service rate (macroinstructions/unit time)
The probability -that the instructions are ready and
will be fed to the gqueue of stage 1.

q : The probability that the instruction will be output.

As a consequence, (1-(p+q)) is the probability of remaining
in the system. The above probabilities can easily be
estimated from a real data flow program. The state

transition diagram is represented by Figure 62.

Figure 62: The State Transition Diagram

Let 1-(p+q) = z ; (p+q) = X ; u,+ A=y ; and g = P/ux

POQ,- Pl u3x ——an PlﬂPo(w/ usx)"Po

Pl (p + WX ) = Pow + P2 g X
PZ - (Pow (C yp+ u3x)/(u3x - 1))
X

okt
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* = 2 =
S By =P (y/ u3x) -POB2

and P.=P 8

u.+A n
) T7-1

In general p =p g% = p
n 0 o (u (pt+q)
In order to compute Po (the probability the system being

empty) the normalyzing relation is applied and

K
n
nz=_6P° ((y +3)/ Cuy (p+a))™ = 1
L= (3 #2307y (ra) )

1=P
o

1- ( (u2 +>~)/(u3 (p+q)))

1-¢( (u2+l)/ (u3 (p+q) ))

o

1= (wtr)/ (g rr) N

Now, substituting the final expression for Po in T7-1 we

obtain the the following general state prbability
n
1= ((+A)/ (y (pHq ) (ht2)

P =
n

K+l
i- ((vz-f-l)/v(u3 ( ptq))) ¥y (pt+q 7-3
The parameter u in Eq 7-3 signifies the fact that the state
probability does indeed depend on the service rate of stage

2. Stage 1 is an example of (M/M/m):(FCFS/k/w) and the
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solution in general is given by

k
P =P_Lﬁ 0$k5m_1
k o KIm
Bo=2 (MW (@ /my) mtrEx

Next Po is calculated
>
p =1

k=0

m-1 K
P +ZP =1

0 k &= k

m-l

m-k
+Z'_" P, (P -(E)l- =1
k=0 kl m

let k~m = 2

m-1 K~ m- (z+m)
Ak 1 A4 2Hm (m)
- P (=) -~— + P (<%
m-1 K-m
Po[ (‘{ﬁ"‘k‘ft‘. + g (e (2), 1
k=0 z=
let (A) =P
ﬂil k m K-m z
. P [ = o+ & L ]= 1
° k=0 m} z=0 m
{m- ok om 1= ( !:)K-mﬂ'
P v
o] — ki inl - —
k=0 1-¢( - )
1 ok b 1- (o N -1
o P = -7 + - [ ]
° k=0 * "1 (&)

164

7-4a

7-5a
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Therefore, equations 7-4%a and 7-5a become,

m-1 k m 1- (—-‘2-)1(—“]"”1
_ 2: o) m Ak 1 7=Ub

Po _{k=0 kl+ m![ 1- (<2 IR u) ki
0%k £ ml m

ek Y - 112k O
P ={ -t a— — o 7-5b
1 Lo kI mi _ 0 u ml
K %=0 ©1- ()

where aék -‘-’K
Stage 2 is the classic (M/M/1):(FCFS/1/=) case, the solution

is given by

A

1..(_...) A Lk

- i A Ly £ T7-6
pk-[ 2+l].( m ) 04kl

1- (=2
u

= 0 otherwize

In subsystem 1, the queue holds all the instructions that
are ready for execution. As soon as a PE becomes available,
the instruction at the head of the queue will seize it.
The overall average service time is considered as the
average service time of all the PE's.,

In subsystem 2, the queue will hold only the resultant
package. The result of executing an instruction in the PE
will be tagged to each of the destination addresses in the
execution packet. For example, if the execution packet is
of the form :

E% code, opnd1 , opnd2 , destl ,dest2 , dest%]

then the resultant package produced is of the form :
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<Result , Dest1>

<Result , Dest2>

and <Result , Dest3>
These three packets will be in the queue 1in this order.
This subsystem will examine each resultant packet and place
the result in the memory at the address specified by the
destination part of the packet. The queue is of the FCFS
type and only one instruction is serviced at a time. The
capacity of this queue is assumed to be |. The capacity can

be calculated by

| = Number of PE's x (Average number of destination
addresses in each instruction)

The third subsystem represents the model of the central
memory of the system. The memory can be modeled as one big
queue whose size is M (éhe size of the memory).

The utilization of the PE's equal to the expected number
of the PE's in the busy state to the total number of PE's in
the systen.

1 -
pPE=-n—E[PEB] 7=7

The number of instructions in ¢the system can be defined

according to the following:
Nsys(t) = Nqs(t) + NE(t) + NR(t)

Let Pihj (t) designate the probability that the system is in

state Eihj ,

where 0 <1 < (K+1+n) ¥ K for K>3> n

0 <IN
0 <h <(K-n) TK for X 3> n

From Eq 7-7, the E [PE] is given by:
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E[PE) = (LB | + 2.2, +...+0.B )+

(LB, +2.P 1, + oo # 0B )+t

(I.Pokl + Z.Pokz + ... F n.Pokn)'l' ceot

(1'P201 + 2.P£Lm2 + ... + n.onn)_‘_ o+

(LPy ) + 2Bpp ¥ oon + 0By o

= A &

ELPE; 1= &5 %0 55 3-Ting

Therefore, the utilization of the PE's is found

PpE LZ- ZZJ ihj] 7-8

=0 h=0

Equation 7-8 can be reduced even further. We lump Nq and NR

S
into one parameter (Nw) to represent all the instructions in
the system that are not under execution., This 1later
modification will reduce the complexity of Eq 7-8 especially
when a large memfory is employed.

Therefore, Nw(t) = Nq(t) + NR(t)

In fact, the PE section sees Nqs and Np indistinquishable.
Also note that the transfer rate from the memory to the
queue is not significant. Now, the system is considered to
be at statz %jat time t, when

Nqs(t) + NR(t) = Nw(t)=r and NE(t) =j

where 04r<2K and 0<jsn . (t) 1is the probability that the

Prj
system is in stste Erj . When working in steady a3state

conditions, the following are true,

lim “,Nqs(t) = Nqs
11 N_ (¢t = N
oo R( ) R
and lim N (t) = N
t—=doo W w

Therefore, Nwz Nqs+ NR ,and equation 7-7 becomes,
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2k n

1 1 ;
Ppg = 5 ElPEy 1 = T[§ ;1;1 3B ] 7-9
Observe the feduction in the number of terms in equations
7-9 and 7-8, there are 2Kxn terms in Eq 7-9, and kxKxn terms
in Eq 7-8. That is, Eq 7-9 reduces the number of terms by a
factor of (K/2) which is significant for large memories.

The average number of instructions waiting in the queues

equal to :

N = [1.P . + 1. +...
q { 11 1.P + l.Pln] + [2.P,, +2.P,, +...+ 2.P n]+

12 21 22 2
. . + . +
[ 2k P2k,l Zk'PZk,Z +,..+ Zk'PZk,n]
o 7-10
N = rP =
1T = j=1 r]

Due to the fact that the PE's can not be idle while an
instruction is ready and waiting, then the only condition

under which an instruction is truly waiting are i.Pi for

,n
14i22K, and as a result Eq 7-10 becomes
- 2l 711
N = - -
q g;: i Pin

1
The APL program for the analytic case is shown in appendix

(F).

T.4.2 The Simulation Analysis

Two simulation analysis will be performed,

Case 1: The general instruction execution type. The
instructions are treated as a whole and the decisions
are based on probabilities rather than the exact
arrival of operands.

Case 2: The more detailed type. A typical data flow
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execution is simulated. In this model each
instruction cell (i.e., op code, operands, dest-

ination addresses) is completely specified.

T7.4.2.1 Case 1

Case 1 should support the analytic study of section
T.4.1. The simulation flow chart for this case is shown in
Figure 63. Due to the GPSS limitation, a maximum of 200
transactions (instructions) can be present in the system at
any given time. The case 1 simulation program is given in
appendix G. The results of simulation and analytie

solutions are presented in section 7.5 .

T.4.2.2 Case 2

The second simulation study demonstrates the exact
execution of a typical data flow program. It shows the
power of GPSS language for these kinds of simulation. Each
instruction cell is represented by a number of parameters.
The program to be simulated is shown in Figure 64, Each box
represents a specific operation. To be general, we will not
specify the kind of operation and will represent the service
rate of each PE with an exponential service rate., Parameter
4 is used to store the service time of each PE., If desired,
the specific service time <can be supplied. Figure 65

represents the flowchart of the second case. The memory
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(Start)

Specify the
number of

Inst. in th

stem.
Hold
& Arrival of
Instruction

2

Assign PE
service time

Enter Mem. Que.
]

Process the in-
struction in

the Mem.
P ‘gﬁgib>q
PE Done
Queue
I——=3 1
Execute the Terminate
inst. & exit] the inst.

Process to r
Temory End.

J

Figure 63: The Simulation Flow Chart for Case 1
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cells that correspond to the program shown in Figure 64 are
given in Figure 66. The numbers adjacent to each cell give
the identity of the cell. The parameter definitions are
given in the program listing in appendix G. With a little
modification, the program can be used to simulate

vector-oriented problems.

19 22 25

28 31 34

37

40

Figure 64: The Example Program to be Simulated
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Define each instruction
in the system, and place
in Memory Queue.

-

Admit oge
Instruction

y

Remain in Enter the
MEMQU PEQUE

cur%gnt
instr.

) Execute

Taggrec-

Increment Opnd
counter by 1

and test for
instruction Y N
readiness.

N /

‘Enter

Save the
Destinat~-
ion Addr.

NY

) l

erminate
Instruction'

Figure 65: The Simulation Flowchart for Case 2

Output the
Result.
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Pl |P2 P4 {P5 | P6 | P8 | P9 P11} P12} P13]P16

1 {1 ; -l2 {22 {3}2o]-1|-1-
3

4 12 4 - 12 2 5 6 21 | ~ - -
5
6

7131 4 - {2 2 8 {93}~ {-]|-
8
9

10 |4 10 -2 {2 J1ur]12)24 |26}~ |-
11
12

13 5 13 - 12 2 14 15 |27 - - -
14
15

16 (6 16 - 11 1 17 { 18 136 |~ - -
17
18

19 |7 19 - |2 0 20 | 21 {29 32 (-~ -
20
21

22 18 22 - 12 0 23 | 24 130 35 |- -
23
24

PS5 19 25 - 12 0 26 27 |33 |- ~ -
26
27

28|10 28 - 12 0 29 30 138 |- - 50
29
30

311 f 31 - |2 o 32 {3339 |- |- |-
32
33

34112 34 - 12 0 35 36 (42 - -~ -
35
36

3713 37 - |2 0 38 39 (41 - ~ S1
38
39

40 14 40 - 2 0 41 42 |- - - 52
41
42

Figure 66: The Memory Cells for the Program of Figure 64
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7.5 ANALYSIS OF RESULTS

Case 1: As mentioned earlier, both analytiec and
simulation techniques are used in this case. The operand
counter of each instruction is not specified explicitly, but
rather probabilistic assumptions are employed. By
specifying the probabilities p, and q, the readiness, or not
readiness, and the completion of the instruction can be
decided. Three possible values for p and q are tested, p.q,
P=q, and p,q. The corresponding results obtained for the PE
utilization as a function of n are ploted in Figure 67. It
is expected for the case when p 1is greater than q ,that the
PE utilization will be higher than for the other two cases.
Furthermore, the corresponding throughput for the above
cases are shown in Figure 68. The throughput 1is divided
into two parts, that of the PE's aﬁd that of the whole
systen. The average contents of the different queues are
obtained and ploted in Figure 69. Note that the queue with
the greatest content is the memory queue. The average PEQUE
content is seen to be zero for this particular example. In
general it can be greater than zero.

Case 2: The results for this c¢ase are those of the
simulation study only. As shown in Figure 67, the addition
of new PE's to the system will reduce the overall
utilization of thhe PE's and increase the overall system

throughput. Filgure 70 supports this fact.
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The different queue contents as a function of the number of
PE's are shown in Figure 71. The OUQUE content reduces with
the introduction of new PE's. As more PE's are added, the
probability that the ready instructions remain in the
operation unit queue reduces. The content of the queue will
approach zero when the number of PE's reaches the maximum

degree of parallelism in the program.
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Chapter VIII

SUMMARY AND CONCLUSION

8.1 SUMMARY

This dissertation presents a straightforward approach to
the analysis of the performance evaluation of parallel
architectures utilizing microprogrammable microprocessor
elements. Qut of the many existing configurations, three
particular architectures are studied. We feel that these
models and their analyses are representative of a wide class
of generalized networks. The methodology presented should
be transferable to different network models.

Numerical queueing techniques along with simulation
studies are performed. The analytic model is less expensive
to study than the simulation techniques; however, the price
paid i1s the 1labor involved in developing the equations to
set up the real model. Simulation techniques in contrast to
the queueing techniques can be wused to model more complex
structures. Nevertheless, both queueing and simulation
techniques play essential roles in computer system
performance evaluation., Building the mathematical model can
be a very difficult stage in the performance evalution
procedure. Emphasis should be placed on the factors that

- 181 -
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influence the flow of information in the model, which in
turn are subjected to certain assumptions.

Generally, there are two approaches for performance
evaluation: deterministic models, and probabilistic models.
The task arrival rate and the task service times are usually
specified by probabilistic distribution functions.
Probabilistic models provide the general overview of the
system performance, especially when system parameters are
not well developed.

We have modeled and analyzed three basic network
architectures: the controlled multiserver model, the array
model, and the data flow model. In the controlled
multiserver model a single control unit is wused to control
several independent functional processing elements (each
capable of performing specialized tasks). In the array model
the control unit c¢ontrols the whole group of PE's or a
subset of the PE group simultaneously. In the third model,
the data flow model, the PE's are selected based on their
availability. Each PE is considered to be a stand-alone
unit, which makes the overall system more reliable.

Certain assumptions were made in each case. Simplifying
the queueing model 1is necessary in most analyses. The
techniques wused in this study can easily (with minor
modifications and depending on the case under study) be
applied to study other similar models.

The design procedure 1is summarized by the following
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1. Setup the queueing (mathematical) model.

2., In order to simplify the model, if possible, combine
the service time of two or more consecutive servers
into one server (as in the CMM case).

3. Insight is gained by performing the analysis at two
levels:

a) The job execution level: Some architectures are
better analyzed at this 1level, In particular, in
the array model, each Jjob is assigned a different
number of processing elements.

b) The 1instruction execution level: For some
architectures such as the CMM and DFM this analysis
will elaborate investigation of the system

parameters. In the DFM, 1instructions are prepared

for execution whenever their operands are ready.

4, Set up the simulation procedure which will supplement
the queueing analysis. Byh:repeating the simulation
with the assumptions removed, insight will be gained
into the effects of the assumpﬁions made in the
analytic case.

It 1is very difficult to directly comparc these three
models for each model has its own applications and
environment of operation. Our intent is not to compare
these models nor expect them to be universally applicable,

but to provide building blocks and various approches. We
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hope that network researchers can use the ideas presented in
these three examples to effectively construct and evaluate
their own particular network models. We will, however, make
some statements regarding these three models.

For example, in the <c¢ontrolled multiserver case, the
analysis 1s based on the instruction execution, whereas, 1in
the array model, the analysis is based on the job level.
Depending on the job under execution, different PE's will be
selected with different probabilities 1in the first model,
whereas in the third model (the data flow) the selection of
the PE's is done with equal probability. Unlike the array
and the multiserver model, the data flow model will perform
more reliably in environments where the failure of any of
the processing elements pose degredation to the computation.

As a final note, we should emphasize that in general most
computer architects agree on the following goals in
designing general purpose computing networks:

1. Effective distribution of small pieces of computation

over many processors in the system.

2. Enough modularity so that additional blocks of

processing elements can be easily added.

3. A measure of fault tolerance so that hardware failure

may decrease performance but will not necessarily
halt the process.

4, No dependence on expensive interconnection schemes.

The three models of chapters 5-T7 support most of the above
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criteria.

8.2 FUTURE APPLICATION

With the advent of VLSI, we can foresee the important
role that these chips play in the design of large computer
networks. As computer structures continue to grow in
complexity, in size and in diversity, we need to design
tools to evaluate the relative merit of different aspects of
machine architecture.

For a large computer network it is sometimes desirable to
have different computers at different nodes. The NMSU-MBSE
provides a basie unit in sueh network. Using bit-slice
microprocessor elements provides better performance both by
the speed of the chip in the data path and the capability
in performing the emulation in micreccode.

A number of applications that require parallel
configuration exist such as 1in image processing, digital
filtering, weather forecasts, seismic exploration systems,
plus others. Reconfigurable parallel architectures may
provide the flexibility that is necded by such systems.

By using a multiple processing elements system,
throughput can be improved, and processing requirements and
capabilities unobtainable by wuniprocessor systems can be
satisfied. However, the success of a multiple processor
system greatly depends on successful modeling and

performance analysis of the target network.
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Appendix A

SOLUTION FOR THE CASE N=3 AND C=3 OF THE
CONTROLLED MULTISERVER MODEL OF CHAPTER V

Let us start witn tne probability stacte vector,

r -
P11

P23

and finally:

let

-1

P12 ’[B] [A]

Ppl=[ 2] [+ ]

a1 Py

Paa| T B, 2 Pl p — "

B3 Pa

)

P31 rpll

| * [L] Ppfp——2

P33 P,

ey
Y] - 3
P23

Supstitute Egq 3 into Eq 2 and solving for [ PZi’s]
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Pa1 p
2y|= ¢ 111 - (8170 (aln (w17t B (317" L] pﬁ —_—2
22 : 2
P
LPza 13

NoWw supstictucte Eg 2' into Eg 1 and solving for [Pl"] we
1's
obtain
P11 )
_ -1 -1 Y G -1 1
Ppol= \ (11 - (817 (]| L1)-(BI7 (1A [w 177 [B17 (L] Y I
p
P13 3

all cne quantities in Eq 1' are Known except PB' Plugging
Eq 1' back into Eg 2! then[PZi,Jare solved for also in terms
of Po.

Finally plugging in for [P ,,S]in Eq 3 ctaen ugi's]are

2i
again solved for in terams of %). By using tne normalizing
racvio in Eq 5-23 Pois tnen found. Lastly, o0y substituting
for Po in Egq's 1' ,2', and 3, ¢tne state prooapilivies are
found. Once Known, the state prcehaoilities are taen used co
find tne different utilizacvions, 1i.e. for eacn PE and for

the Wwhole system. Moreover tne different paramecers lLike

tnroughput can be computed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B

THE ANALYTIC PROGRAM FOR THE CONTROLLED
MULTISERVER MODEL OF CHAPTER V

YMODELI[ [V

7 MODEL3
[17 A THIS PROGRAM 16 FOR THE CONTROLLED MULTISERVER CASE
£23 & ~ - - - T T T e e
£33 VEMTER THE MO, OF FE''6,!
£41 ko= (eiell)
£57 VEMTER THE CAFACITT OF THE STSTEM,I,E,THE QUEUE LENGTH !
réd TPLUS THE MUMEBER OF SERVERS ,
L71 'C o=ty (¢CeDD)
[el VEMTER THE ARRIVAL FRATE,XACT, /UNIT TIME!
£el 'Ko= Yy (KelD)
[10] 'ENTER THE SERVICE RATE FOR EACH FE ,SHOULD BE OF DIMERSION Hx]'
111 ‘'uv = !

[12]1 UVe(Hy1)rD

L1371 EMTER THE FROBRAERILITY VECTOR,FV,y IT SHOULD HAVE THE '
L1443 U DIMEMSION OF MXi yWHERE M IS5 THE HUMERER OF FE!''g ¢
L1351 FVe(Myl)rid

L1613 A FV&(Hyld)re o1 41 o1 1 1 o1 o1 o1 o1 41

171 Te(tyl)ployMp ) AGEMERATE AN TLEWNTITY MATEIN

L1821 UTe (M) pUV

L1923 UqeXxUT

L2010 Tle(Myrt)pPy

L2171 6A1edTy

L2221 Aedl+,3U]

LR3T  Ele(MyM)pKyHpQ

241 EekieUl

[251 Se(HR)+,xA

£261 eKxI

L27T Teld®E)+,xl

[t oa] We (Qotdy)PQ AIMITIALIZATION OF THE W AMD F ARRATS

Seme aros o oms Sand $000 A0ep Rene A30n e ¢1m dasn Smmn Samm Boum $bud SO0 14 4R Fren Kol 4508 0I5 Sine Fi0n SO G4%0 ISIF POUS SO Sedh SFFY 190D S0 Seme Peve o399 deod

L29] a
£E301 F&(0:M1)F0
£31]  Jed

[32]1 We(lyMert)p(E-84 X (KX (HUL)))

C33] WSIWeW s D11 (LyMytt)p (LG g X(HWLIS5]) %, xT)
L34] Jedd]

L3513 =-0uTx (Jr(C-~1))

L3461 WS

L3721 0UT de(C-])

L3831 Meld

LERT FelloyMy )P CCHWIWS3 1)+ X CEE) +, X (KXFVY)
L40] FSided-]
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L4117
L4271
£431
£44]
£45]
L4611
£471
£481
[421
£9501
£911
£9521
L9531
[543
L9513
£961
[s571
L5831
L5917
L&01]
L4131
L4621
1631
641
651
L6461
[471
L4683
|
[70]
L7711
L72l
(731
[741
7591
761
1771
781
L7921
£e0l
Leld
La2l
[B31
341
11851
(841
L8713
Ll

195

FeF g L1T(1yMy 1) p C(HWEIF 3T+ XTH  XFLHG 5 ])
HéH41
QERITX (1)
3PS
EXITIFEFy L1301 oMy 1) A ((KX(HYL) )+, XFIH;5T)
FT¢0Q
Hé&1 ACALCULATIOM OF FQ
f
COMFUT SFTEFTH(+/FLH311)
HéeH¢ 1
SLOMEX (HHYQ)
5 COMPUT
DOMEIFQ(L+(L+FT))
O = 'y (9FO0)
UTILIZS(1-FOIX100
TUTILIZE = !y (9UTILIZ)

FFeFXFQ

'THE STATE FROEAXRILITIES ARE !

VPR o= !
A FF
g I ORDER TO FIMD THE UTILIZATION OF EACH FE THEM DO}
A FO+FLI14F21+F31 ., o +FHI=]1 3 THEN FQ=]-5UM FI{ FOR I=] TO M
A THEM THE UTILIIATION OF FE{=5UM FI] FOR ALL I'S

Hel a BEGINMNS THE CALQUL, OF UTILIZ, FOR EACH FE
@ mrmemeeemem i e o o oo et o ot o o e e
FE(Qslyl)r0
SUMIL S TOT&(+/FEL5H1L)

'Fly(4H) 9 'FE = 1, (4TOT)

FECFEyL11(1lsy1s1)pTOT

HeM41

SOK X (HH)

SSUMI
QUI'FE = ' p EMD? THE CALQUL, OF UTILIZ, FOR EAQACH P
R e e e e o
A FIE

I¢] p BREGIM; CALCULATION OF THE EXFECTEI MO IM THE STSTEM,
Qe oo o e et e e 2 e o o
TEMF ¢()
HOIMN I TEMFLTEMP(EL(+/QFFLIS510))

Telw]

SOUTLX (IH>Q)

GHOIM g EMOS CALCUL, OF THIE EXFECTED MO EM THE ST7YSTEM,
R e e e o ot o o o e o 1 o 1 1 o e e e e
OUTL ¢ 'EXFEQTER MO LM THE SYSTEM = 'y (¢TEMF )y TRAMSACTIONS
A CALQCULATION THE AVERAGE O IH QUEWE
R e e o ot e o e 1 s o o o

HOIMQAUE«)

P oAt
ren
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[391
L2031
L9111
L7921
L9331
L9431
L2S1
£261
L9713
L9813
£921
£1001
£1011
£1021
L1031
L1041
£1051
L1061
L1071
£1081
51091
1103
£ii11
L1123
£11337
v
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QUE § MOIHAUE HOLHRUE+ ( (L~1)X (+/FFLI3517))

LTeTad
SOUEOUTX  (I>C)
SQRUIE

QUEQUTS 'OVe, MO IM QUEUE = ', (4+MHDIMQUE),' IMSTRUCTIONS'
A CALCULATIOM THE AVG, FRESFONSE TIME

ST o 4o et 0000 Be0 4000 bout Sove Be0e Bafe Peke G JORY S St S4me s Gt Bee ——— " -

FROEFULE(H/FRECHLT)
RESFTIMEC (TEMF: (KX (1~FROEFUL) ) )

'AVG, RESFOMSE TIME = ', ($RESPTIME), ! TIME UNIT!
4 CALCULATION THE AVG, TIME IM THE QUEUE
a — 2 et e e o e
RUETIME ¢ (HOTHRUES (KX (1~FROBFUL)Y ) )
'AVG, TIME IM QUEUE = ', ($QUETIME), ' TIME UMIT!
A STSTEM THROUGHFUT
g m————
THEOU& (UTILIZE{00) X {+/UVL $1T) =)
1SYSTEM THROUGHFUT = ', (¢THROU) ¢ IMSTE/TIME UMIT!'
TSTYSTEM UTILIZATION = ', (4UTILIZ),' o/0!
'ARRIVAL RATE = 1y (4K)y' THESTRUCTION /TIME UMIT!
'SERVICE RATE VECT, = !
QuUV
IFROE, SELCTION VECT,= !
8FV
THO OF FE''S = 'y (i)’ yAMD STSTEM CAFACITT = ', (4C)
IMODEL2LOIY
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Appendixmc

THE SIMULATION PRCGRAM FOR THE CONTROLLED
MULTISERVER MODEL OF CHAPTER V

SIMULATE
[ X I X XXX R XS R RY S XRYSRRZZIRSRIRZSRRIZRRZIZZZZRZZZZZZZZZ X 2 2 )
* MODEL31 »
* THIS PROGRAM SIMULATES THE EXECUTION OF INSTRUCTIONS *
* 0¥ THE CONTROLLRDD MULTI-SEVER MACHINE AS WELL AS JOB- ®
* ARRIVALS. IN THIS PART (I) WE ASSUME THAT »
. THE NUMBER OF PROGRAMS (JOBS) IN THE MAIN MEMORY TO BE *
* 1 2
L ] L ]

FIXED AND GIVEN BY THE 1ST SEGMENT OF THE PROGRAM
O Y e T T T T T R T T P YR YR YN R Y L]

RMULT 111,333,555,777
o FUNCTIONS SPECIFICATION
IPDIS FUNCTION RN1,C24 EXPONENTIAL DISTRIBUTION

0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1.837.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.97.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

»

PENQ FUNCTION RN1,D9 FOR THE PE NUMBER TO BE ALLOCATED.
0,0/.04,3/.09,%.15,5/.25,6/.4,7/.55,8/.75,9/1.,10
»

b THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
* SELECTIHCG THE NEXT PE TYPE, I.E. THE PROB. OF SELECTING
* PE N0 1 IS 0%, THE PROBABILITY OF SELECTING PE NO 3 IS 4%,
s AND THE PROBABILITY OF SELECTING PE ¥C U4 IS 5% ... ETC.
D)

PESER FUNCTION RNY,C2 FOR THE PE SEVICE TIME ASSIGNMENT
0,75/1.,135
2 NOTE THAT EVERY PE WILL BAVE
. DIFFRENT SEHYICE TIME.

CUSER FUNCTION RN1,C2 FOR THE CONTROLLER SERVICE TIME
0,180/1.,220
b ASSIGNMENT.

INSTR FONCTION RN2,C2 FOR THE ASSIGNMENT QF THE NUMBER OQF
0,50/1.,70 :

b INSTTRUCTIONS.

ENTRY VARIABLE  Q$RDY
SUM  VARIABLE  FN$PESER+FN$CUSER

INITIAL X$INST,O0 INITIALIZATION OF THE NUMBER OF ISTRU-
CUPE EQU 50 ,F .
. CTIONS IN EACH JOB .
STORAGE S8CPU, 10 SPECIFY THE NUMBER OF PE'S IN THE
» SYSTEM.
- 197 =
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* © SEGMENT 1
JOBS GENERATE
QUEUE
GATE LR
LOGIC S
DEPART
SAVEVALUE

TERMINATE

SEGMENT 2

ARIVE GENERATE
ENTER
QUEUE
CAPCY TEST L
DEPART
ASSIGN
ASSIGN
ASSIGN
ASSIGN
QUEUE
GATE LR
* LOGIC S
GATE NU
SEIZE
DEPART
. ADVANCE
SEIZE
DEPART
ADVANCE
SAVEVALUE
TEST LE
LOGIC R
LOGIC R
RELEASE
RELEASE
LEAVE
TERMINATE

*QUT
ouT

THE TIMER

GENERATE
TERMINATE

. % W B B S S

START

-

RMULT
CLEAR

(ASSOCIATED WITH THE NUMBER OF JOBS IN THE
SYSTEM.)

1119 JOB ARRIVAL

MEM

SYS THIS WILL MAKE SURE THAT ONLY ONE JOB IS
SYS ACTIVE AT ANY GIVEN TIME

MEM

INST,FNSINSTR ASSIGNMENT OF THE NUMBER
OF INSTRUCTIONS.
1

200,FN$XPDIS
SYSTM

DUMMY
VSENTRY, 10
DUMMY
1,F¥S$CUSER
2,FNS$PESER
3,850y
4,FNSPENO
RDY

NEXT

NEXT

CUPE

CUPE

RDY
P1,FN$XPDIS
pY

RDY
P3,FN$XPDIS
INST~,1
X$INST,0,00T
sS¥s

NEXT

CUPE

Py

SYSTM

GENERATE THE MACRO INSTRUCTIONS

PARAMETERS ASSIGNMENTS FOR CU

AND PE SERVICE TIMES.

THE COMBINED PE AND CU SERVICE TIME
ASSIGN THE PE NUMBER TO THE
INSTRUCTION.

50000
1

THE CONTROL CARDS

5
111,333,555,777
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*CAPCY TEST L
PENO FUNCTION
0,1/1.,16
START
*
RMULT
CLEAR
®CAPCY TEST L
PENO FUNCTION
¢6,1/1.,21
START
*
RMULT
CLEAR
¥CAPCY TEST L
PENO FUNCTION
0,1/1.,26
START
END

V$ENTRY, 10
RN1,C2

5
111,333,555,777

V$ENTRY, 15
RN1,C2

5
111,333,555,777

V$ENTRY, 20
RN1,C2

5
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200

SIMULATE

L R X R R X R R X R RS R RS SRR R R SRR SRS RS RS ZSEZZRSZRRZZZX )

L MODEL33 »

s THIS PROGRAM SIMULATES THE EXECUTION OF INSTRUCTIONS ®

» ON THE CONTROLLRDD MULTI-SEVER MACHINE AS WELL AS JOB *

s ARRIVALS. IN THIS CONFIGURATION (III) WE ASSUME THAT ¢

. THE NUMBER OF PROGRAMS (J0BS) IN THE MAIN MEMORTY TO BE *#

* FIXED AND GIVEN BY THE 1ST SEGMENT OF THE PROGRAM »

: THE CU AND THE SPE SERVICE TIMES ARE SEPARATE. .

L THE MODIFICATION MADE IN THIS CASE IS THAT THE CU CAN *

* SERVE MORE THAN ONE INSTRUCTION AT ANY GIVEN TIME .

SRR ANRRRERARNNASRAERRERARRTTURARNACRNBERTIRARRNRARRAABABANARNDY
RMULT 111,333,555,777

L FUNCTIONS SPECIFICATION

XPDIS FUNCTION RN1,C28 EXPONENTIAL DISTRIBUTION

0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38

.8,1.6/.84,1,83/7.88,2.72/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
'.97.3.5/.98,3.9/.99,u.6/.995.5.3/.998,6.2/.999,7/.9998,8

PENO FUNCTION RN1,C2 FOR THE PE NUMBER TO BE ALLOCATED.
0,1/1.,6

%0,0/.04,3/.09,4/.15,5/.25,6/.4,7/.55,8/.75,9/1.,10

#

¢ THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF

. SELECTING THE NEXT PE TYPE, I.E. THE PROB. OF SELECTING

. PE NO 1 IS 0%, THE PROBABILITY OF SELECTING PE NO 3 IS Uu%, AND
s THE PROBABILITY OF SELECTING PE NO 4 IS 5% ... ETC.

]

PESER FUNCTION  RNY4,C2 FOR THE PE SEVICE TIME ASSIGNMENT
0,75/1.,135

. NOTE THAT EVERY PE WILL HAVE

b ITS OWN SERVICE TIME.

CUgER FUNCTION RN1,C2 FOR THE CONTR. SERVICE TIME ASSIGNMENT.
0,180/1.,220

INSTR FUNCTION RN2,C2 FOR THE ASSIGNMENT OF THE NUMBER OF

0,50/1.,70
¢ INSTRUCTIONS.
ENTRY VARIABLE  Q$RDY
SUM VARIABLE FN$PESER+FNSCUSER :
INITIAL Y$INST,0/X$CPUS,0 INITIALIZATION OF THE
INITIAL X$CNTR,0/X$CHCK, O NUMBER OF INSTRUCTIONS AND

INITIAL  X$NEW,0/X$LAST,0 THE NUMBER OFPE'S IN THE
CUNT EQU 50,F SYSTEM.
STORAGE  S$CPU, 10 SPECIFY THE NUMBER OF PE'S
» .. THE SYSTEM.
L ]
* SEGMENT 1  (ASSOCIATED WITH THE JOBS IN THE SYSTEM.)
*
ARIVE GENERATE ,,,5 JOB ARRIVAL
QUEUE MEM
GATE LR SYS THIS WILL MAKE SURE THAT ONLY ONE JOB
LOGIC S  SYS IS ACTIVE.
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DEPART

SAVEVALUE
SAVEVALUE
TERMINATE

SEGMENT 2

GENERATE

QUEUE
CAPAC TEST L
»
ENTER
DEPART
ASSIGN
ASSIGN
ASSIGN
ASSIGN
QUEUE
SAVEVALUE
SEIZE
DEPART
ADVANCE
* TEST NE
. SAVEVALUE
GATE NU
RELEASE
SEIZE
ADVANCE
RELEASE
SAVEVALUE
TEST G
LEAVE
TRANSFER
LOGIC R
TERMINATE

TERM
DONE

GENERATE
TERMINATE

START

RESET
ARIVE GENERATE
START

RMULT
CLEAR
PENO FUNCTION
0,1/1.,11
. START

RMOLT

MEM

INST ,FNSINSTR
CHCK, X$INST

1

150 ,FNSXPDIS
DUMMY
VSENTRY, 30

SYST™

DUMMY
1,FN$CUSER
2,FN$PESER
3,V8sUM

4 ,FNS$PENO

RDY

LAST,PY4

CUNT

RDY

P1,FN$XPDIS
A$NEW, X$LAST S
NEW, X$LAST Q
Py

CUNT F
P4

P2,FN8XPDIS

P4

INST-, 1
K$INST,0,TERM
SYSTM

»DONE

sYs

50000
]
1,NP

1115

5
111,333,555,777
RN1,C2

5
111,333,555,777

ASSIGNMENT OF THE NUMBER
INSTRUCTIONS.

GENERATE THE MACRO INSTRUCTIONS
IS A CONCEPTUAL QUEUE

TESTING FOR THE SYSTEM CAPACITY
THE QUEUE LENGTH +SYSTEM CAPACITY

THE CONTROLLER SERVICE TIME

AND PE SERVICE TIMES.

THE COMBINED PE AND CU SERVICE TIME
ASSIGN THE PE NUMBER TO THE
INSTRUCTIONS.

INCE EACH PE DOES NOT HAVE ITS OWN
UEUE, THEN IT IS NECESSARY TO CHECK

OR THE IDLE STATE OF THE PE.

201
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CLEAR

®CAPAC TEST L
PENO FUNCTION
0,1/1.,16

START
*

RMULT

CLEAR
®CAPAC TEST L
PENO FUNCTION
0,1/1.,21

START
»

RMULT

CLEAR
%CAPAC TEST L
PENO FUNCTION
0,1/1.,26

START
#*

RMULT

CLEAR
#CAPAC TEST L
PENO FUNCTION
0,1/1.,31

START

END

V$ENTRY, 14
RN1,C2

5

111,333,555,777

V$ENTRY, 18
RN1,C2

5
111,333,555,777

V$ENTRY, 20
RN1,C2

5
111,333,555,777

V$ENTRY, 30
RN1,C2

5

202
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Appendix D

THE ANALYTIC PROGRAM FOR THE ARRAY PROCESSING
MODEL OF CHAPTER VI

v MODELZQ
[ ] OFFeq
Eg; a THIS PROGRAM REFRESENTS THE AMALTTIC SOLUTION FOR Al SIMD MODEL
A
£31 'EMTER THE NO OF FROCESSIMNG ELEMEMTS, IT SHOULD BE ¢
(| 'GREATER THAN 3,
[-%} ‘U=, (eHel)
71 'ENTER THE STSTEM CAPACITY,I,E,AUEUE LENGTH + SERVER!
€81 'C o= 'y (eCeld
71 'EMTER THE ARRIVAL KATE!
£10] ‘K=t ,(eKe() aJOKES FER UNIT TIME

C11] ‘'ENTER THE SERVICE RATE*

C12] 'U=!y(eUel]) A JOBS FER UNIT TIME

C137 KKeksu

€141 'EMTER ®V § THE PROBARILITY VECTOR,IT SHOULD HAVE THE LEHGTH OF # !
£is3 *THE PROBAPILITY OF THE JOB SELECTING A CERTAIM MO, QF FEt 15, ¢
L1861 A PYe(N,1)r0 ’
C17]1 PYe«(Hy1)p 0 0 0.04 0.05 0. . 15 2 23

£18]  Te(Hamdpe,meo 0.06 0.1 0.15 0.15 0.2 0,25

L1727 Be(MyM)p(K4U) ,1ipQ

£201 'THE & MATRIN =

L2111 4 @

C22] Tle(M,r)pPV

L2231 AlenTt

243 'THE A1 MATRIN =!

L5 a A1

L2631 AeuxAy

C27] LeKkxI

€233 We(OpHyH)PQ AIMHITIALIZATION OF THE W AND P AREATS

291 a

£301 P&(OsMy1)r0
[31] =Sei

(321 E+C-3

€331 Se(@m)+,xA

€347 Te(EB)+,xL

€351 Hel~9xKK aBEGIN: CALCULATIOM OF W ARRAT
L3481
£37]  YeXI—(S4,x(BX)+,x7T)

381 WeWyL12(Lstpdt)p (T=Sk , X (BTI+,2T)

L3970 CONTINUEIWeW,L13(1sMt) P (I=S4 X (BWET;5])+,XT)

- 203 -
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401
£411
C421
£433
£L441
L4451
L4611
L4713
.481
[491
L5013
L5131
L5273
L5371
541
[S551
2561
LS71
€583
L5973
Co01
611
1623
[43]
L6641
[6T]
L6671
L&771
Lé681
L6971
L7701
711
721
£731
£741
L7451
[761]
L7713
L7861
L7791
L8071
LeLl
£821
£831
L3847
851
L8687
L&71

204

E«BE~]

TeIpy

IFSX1(ELQ) AEMD: CALC, OF W ARRAT

A e e ————————

S COMTINUE

FS$Je(C=-3) aREGIN CALC, OF F ARRAYT

: MOTE THAT Akl THE ELEMENTS QF THE P VECTOR ARE IM TERMS OF ()
Hed

FeFyL1IC(Ls My 1)FC(RAWEDF 500+ X T, 2FV)
EACKIFEFy L1 (1sMy 1) f (CAWL(I=1) 55034+ XTH XF[H35T)

JeJd—]

HeH4 ]

20UTX (JL1)

SEAQACK

OUTI9EXITY (ML{3) a4 THIS STATEMENT SHOULD MHEVER BE EHEQUTED

A SIHCE M IS > 3

FeF LIl oMy 1) P (CEATIF XTH XFE(C-3)53 1)
FeFyLLICLy My 1P (U 0 X T4 XFL(C-2) 55 1)
FeFyL1CLoMy 1IP (KRXFL(C~1)557)
EXIT!!THE FOLLOWING ARE IN TERMS OF FQ' aEMD? CALL, OF F aRRAT
A e e —————————————
A yF

HeQ a EEGING COMFUTE F(Q

R T e

FTéeQ
SUM s HeH+ 1

FTEFTH(+/FLHF51T)

SRESULTX | (HXC)

3 SUM )
FESULTIFQO&(1+-(1+FT))

VERQ = ' aEND! COMFUTE FQ
A e e
FQ

UTILIZE(1-FO)X100
THEOU(UTILIZXU)Y-100

'THE FIMNGL PRORARILITIES ARE ¢ ¢
YRR o= FXEQ = '

FF 4F %0
R Sl

"
f CALCULATION OF THE TOTAL CFU UTILIZATION
el

UTL&0
REFEATIUTIUTIH(JIX(+/FFL3JIS5LI))
g

SEBTORX L (J3H)

SREFEAT
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881 STOPIUTILI«(UTI+N)YX100
{891 PE&(Qy1r1)Ff0 a PEOGIN, CALCUL, THE UTILIZATIOM OF A CERTAINM

L9031 a

L9213 a NUMEER OF PE'S

921 a  memmcemmaea ——

L23] Hel

C94] SUMIITOTe(+/PPL3H;1]) A SUMMATION QF P1I+FRI+P3I4,, ,+FHI FOR ALL I'S
£951 'Ply(eH) 9 'PE'y! = 'y (9TOT)

L9461 PEPE,([1J(1s,1s1)pTOT

(971 DOMEXY (HIN)

£981 HeHst

791 9Sumz

L1001 DOME ‘PEL1] REPRESENTS THE FROR, OF 1 FE BREING UTILIZED;!'

£1011 FEL{2] REFRESENTS THE FROBR, OF 2 PE''S EBEING UTILIZED, ETC,!
L1023 ‘'PE = !

£10321 PE

L1041 END{ THE QALCULATIOM OF THE UTILIZATION OF FE'S
L10S] a T
L1081 1I&#]l g PEGIM; CALCULATION OF THE EXFECTED #O Int THE STST, AMD IM THE QUE
£1073 a
£108] EXFEQe)

£109] GQURELENeQ

£110] ECUSTIEXFECHEXPECH(IX(+/PFL253511))

£111] QUELEMeQUELEN+®((ZI=1)X(+/PPLX551]))

C112] Tels+y

C1133 -0UTCx1(I>C)

£114]1 +ECUST 4 END: CALCULA, OF THE EXFECTED MO OF TRAMSAC, IM THE STST,

£1131
£114] OUTC'THE EXPECTED MO IN THE STSTEM = ', (4EXPEC),' TRAMSACTIONS'
L1171 'THE AVG, QUEUE LEMGTH',* = 1y ($AUELEM) ,* TRANSACTIONS ¢

C118]1 A QUELEN = HQ

C119] WAITe4/PPLCH31]

1201 WAIT¢{-WAIT

£121] TWAZIT«(]+AUELEN)+(KAWAIT)

£1221 'AVERAGE JOB RESPONSE TIME = ',(eTWAIT),' TIME UHITS!
L1231 ‘'STSTEM UTILITATION = 'y (pUTILIZ)

C124] 'CPUI 'S UTILIZATION a ', (eUTILI)

£125] 'STSTEM THROUGHPUT ty (¢THRQU)

1241 ‘'ARRIVAL RATE S 1 ,(eK)yt JOES /TIME UNIT'

1271 ‘'SERVICE RATE 3 'y(eU)y ' JOBS /TIME UMIT!'

£i281 ‘'PROP, ALLACATIOM VECT.,z *

C1291 arv :

£130] 'HUMBER OF PROCESSORS = ',(eit),' AQHD STSTEM CAFACITT = ',(¢C)
4
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Appendix E

THE SIMULATION PROGRAMS FOR BOTH ARRAY MODELS OF
CHAPTER VI

SIMULATE
ARSNGB ANRERNNERUNRSRERNNIGRARRNERNRARBARARNNGLRABRRNDRNS
* MODEL2A (RUN #1 C=5) )=.7 *
. MACROANALYSIS OF THE ARRAY SYSTEM .
. THIS PROGRAM SIMULATES THE EXECUTION OF JOBS .
® ON THE ARRAY MACHINE .IT IS THE SIMULATION VERSION OF *
» [ ]
* *

THE ANALYTIC CASE.
BN RNANRN NN BRI R RN RN N AR NN RN RN NG RNBBRRRNNRNNNARS

RMULT 11,33,55,77
» FUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1,C24 EXPONENTIAL DISTRIBUTION

0,0/.1,.104/,2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
'.97,3.5/.98,3.9/.99,“.6/.995,5.3/-998,6.2/.999,7/.9998,8

NOPES FUNCTION RN1,D9 FOR THE NUMBER OF PE'S TO BE ALLOCATED.
0,0/.04,3/.09,4/.15,5/.25,6/.4,7/.55,8/.75,9/1.,10
»

THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
ALLOCATING THE NEXT GROUP OF PE'S, Ll.E, THE PROB. OF
allocating 1 PE IS 0%, THE PROBABILITY OF ALLOCATING 3 PE'S
is 4%, andTHE PROBABILITY OF ALLOCATING 4 PE'S IS 5%...ETC.

PESER FUNCTION RN4,C2 FOR THE PE SEVICE TIME ASSIGNMENT
0,70/1.,135
. NOTE THAT ALL THE PE S WILL HAVE

» THE SAME SERVICE TIME.

CUSER FUNCTION RN1,C2 FOR THE CONTLR. SERVICE TIME ASSIGN.
0,180/1.,220

]

* VARIABLE SPECIFICATION

ENTRY VARIABLE  Q3MAIN

EXPEC FVARIABLE (T7#(ST$SYSTM)) EXPECTED NUMBER IN THE SYSTEM
EQUALS THE ARRIVAL RATE X AVG.
TIME EACH XACT STAYS IN THE
SYSTEM. DEVIDE THE RESULT BY
1000 FOR WE MULTIPLIED BY 1000.

THROU FVARIABLE (SR$CPU*(SCS$CPU/STS$CPU))

. THROS FVARIABLE (SR$SYSTM#*(SC$SYSTM/ST$SYSTM))*100

INITIAL X$CPUS,0 INITIALIZATION OF THE NUMBER

L 3 B A

- 206 =
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. OF PE'S ALLOCATED
. T0 EACH JOB.
CAPCY VARIABLE  (X$SYCAP)
STORAGE  S$CPU,10 SPECIFY THE NUMBER OF PE'S IN
* THE SYSTEM.
. THE MAIN PROGRAM
#*
KEY GENERATE 14 ,FN$XPDIS GENERATE THE JOB ARRIVAL
ENTER SYSTM
REY3 SAVEVALUE SYCAP,Y
TEST L VSENTHY,V$CAPCY,QUT
QUEUE MAIN

GATE LR SYs
LOGIC S SYS

ASSIGN 1,FN$CUSER PARAMETERS ASSIGNMENTS FOR.CU
ASSIGN 2,FN$PESER AND PE SERVICE TIMES.
ASSIGN 34,21
ASSIGN 3+,P2
SAVEVALUE CPUS,FNSNOPES
SEIZE cupe SEIZE THE CONTROLLER
ENTER CPU, X$CPUS
DEPART MAIN
ADVANCE  20,FNS$XPDIS
LEAVE CPU, X$CPUS
. ADVANCE ~ P1,FNSXPDIS  CONT. SERVICE TIME
. ENTER CPU, X$CPUS SEIZE THE SPECIFIED NO. OF PE'S
» ADVANCE P2
» LEAVE CPU, X$CPUS

RELEASE CUPE
LOGIC R SYS
LEAVE SYSTM
SAVEVALUE THRPT,V$THROU
SAVEVALUE THRPS,V$THROS ‘
SAVEVALUE XACNO,VSEXPEC
TERMINATE 1
ouT TERMINATE

THE TIMER SEGMENT

GENERATE 500
TERMINATE 1

THE CONTROL CARDS

s e

START 60,NP
RESET
STAR? 60

AMULT 11,33,55,77
CLEAR
*EXPEC FVARIABLE (3%(ST$SYSTM))
®KEY GENERATE 33,FN$XPDIS
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#REY3 SAVEVALUE SYCAP,5

STORAGE S$C?U,5

NOPES FUNCTION RAN1,D5
0,0/.1,2/.3,3/.6,4/1,.,5

START 60

*
RMULT 11,33,55,77
CLEAR

#*EXPEC FVARIABLE (4#(STS$SYSTM))
*REY GENERATE  25,FN$XPDIS
#KEY3 SAVEVALUE SYCAP,6

STORAGE s$cru,8
NOPES FUNCTION  RNI,D7
0,0/.05,3/.1,4/.25,5/.4,6/.6,7/1.,8

START 60

]
RMULT 11,33,55,77
CLEAR

®EYXPEC FVARIABLE (5% (ST$SYSTM))
*REY GENERATE 20 ,FN$XPDIS
®KEY3 SAVEVALUE SYCAP,8
STORAGE s§ceu, 12
NOPES FUNCTION RN1,D9
0,0/.02,5/.06,6/.1,7/.2,8/.3,97.5,10/.7,11/1,,12

START 60

[]
RMULT 11,33,55,77
CLEAR

®EXPEC FVARIABLE (7% (ST$SYSTM))
SREY GENERATE 14 ,FN$XPDIS
#KEY3 SAVEVALUE SYCAP,29
STORAGE S§CPU, 15
NOPES FUNCTION RN1,D11
0,0/.04,6/.1,7/.15,8/.2,9/.25,10/.3,11/.4,12/.5,13/.7,1471,,15

START 60

»
RMULT 11,33,55,77
CLEAR

STORAGE Si§cru, 20
NOPES FUNCTION  RN1,D11%
0,0/.04,11/.1,12/.15,13/.2,14/.25,15/.3.16/ .4,17/.5,18/.7,19/1.,20
START 60
END
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SIMULATE
RN NN RN RN NI NN NN NN RRRRIN RN NN NN RRRER RN
* THE MICRC.-ANALISIS OF THE ARRAY SYSTEM .
. Cs5 AND VARY ) *
* THIS PROGRAM SIMULATES THE EXECUTION OF INSTRUCTIONS *
b ON THE ARRAY MACHINE AS WELL AS JOB ARRIVALS. WE ASSUME®
b THE NUMBER OF PROGRAMS (JOBS) IN THE MAIN MEMORY TO BE *
hd FIXED AND GIVEN BY THE 1ST SEGMENT OF THE PROGRAM *
LT Y R P e R Ry P R I Y Y Y
RMULT 11,33,55,77
b FUNCTIONS SPECIFICATION
XPDIS FUNCTION  RN1,C24 EXPONENTIAL DISTRIBUTION

0,0/.1,.,1087.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1,83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
.-97.3-5/-98.3-9/-99.“.5/.995,5.3/.998,6.2/.999.7/.9998,8

NOPES FUNCTION RN1,D9 FOR THE NUMBER OF PE'S TO BE ALLOCATED.

0,0/.04,3/.09,8/.15,5/.25,6/ .4,7/.55,8/.75,9/1.,10

* THE ABOVE FUNCTION IS USED TO CALCULATE THE PROBABILITY OF
. ALLOCATING THE NEXT GROUP OF PE'S, I.E. THE PROB. OF

» ALLOCATING 1 PE IS 0%, THE PROBABILITY OF ALLOCATING 3
* PE's IS 4%, AND THE PROBABILITY OF ALLOCATING 4 PE'S IS

* 5% . . . ETC.

PESER FUNCTION  RN4,C2 FOR THE PE SEVICE TIME ASSIGNMENT
0,75/1.,135
s NOTE THAT ALL THE PE S WILL HAVE
* THE SAME SERVICE TIME,

CUSER FUNCTION RN1,C2 FOR THE CONTLR. SERVICE TIME ASSIGN.
0,180/1.,220

INSTR FUNCTION RN2,C2 FOR THE ASSIGNMENT OF THE NUMBER OF
0,50/1.,70
2

INSTRUCTIONS TO THE J0B.

ENTRY VARIABLE Q$RDY

EXPEC FVARIABLE (3%*(FT3CUPE)) EXPECTED NUMBER IN THE SYSTEM
EQUALS THE ARRIVAL RATE X AVG.
TIME EACH XACT STAYS IN THE
SYSTEM. DEVIDE THE RESULT BY
1000 FOR WE MULTIPLIED BY 1000.

EXINS FVARIABLE (3%(ST4SYSTM))
THROU FVARIABLE (SRSCPU*(SC$CPU/STS$CPU))*100
INITIAL X$INST,0/X$CPUS,0 INITIALIZATION OF THE NUMBER

* OF INSTRUCTIONS IN EACH JOB
' AND NUMBER OF PE'S ALLOCATED
* TO EACH ONE.
STORAGE S$CPU, 10 SPECIFY THE NUMBER OF PE'S IN
. TH SYSTEM.
: SEGMENT 1 (ASSOCIATED WITH THE JOBS IN THE SYSTEM.)
GENERATE v9¢5 . JOB ARRIVAL
QUEUE MEM
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G 'E LR SIs TRIS CUARANTEES THAT ONLY ONE JOB
LOGIC 8 SYS IS ACTIVE.
DEPART MEM

SAVEVALUE INST,FNSINSTR ASSIGNMENT OF THE NUMBER OF

SAVEVALUE CPUS,FNSNOPES INSTRUCTIONS AND THE NUMBER OF
* PE'S TO THE JOB.

TERMINATE 1

. SEGMENT 2
1
XEY  GENERATE  333,FNSXPDIS GENERATE THE MACRO INSTRUCTIONS
ENTER SYSTM
QUEUE DUMMY
REY2 TEST L VSENTRY, 15
DEPART DUMMY
ASSIGN 1,FN$CUSER PARAMETERS ASSIGNMENTS FOR.CU
ASSIGN 2,FN$PESER AND PE SERVICE TIMES.
QUEUE RDY

GATE LR NEXT
LOGIC s NEXT

SEIZE CUPE SEIZE TRE CONTROLLER

DEPART RDY

ADVANCE P1,FNSXPDIS CONT. SERVICE TIME
RELEASE CUPE

ENTER CPU, X$CPUS SEIZE THE SPECIFIED NO. OF PE'S
ADVANCE P2

LEAVE CPU, X$CPUS

SAVEVALUE INST-,1
TEST LE X$INST,0,0UT
LOGIC R s¥s

0UT LOGIC R NEXT
LEAVE SYSTM
SAVEVALUE THRPT,V$THROU
SAVEVALUE XACNO,VSEXPEC
TERMINATE

»

& THE TIMER SEGMENT

»

. GENERATE 10000

¥ TERMINATE 1

a

o THE CONTRQL CARDS

»

e START 5,NP

* RESET
START 5

]
RMULT 11,33,55,77
CLEAR

®XEY2 TEST L VSENTRY, 7

EXPEC FVARIABLE U4S(FTSCUPER)
EXINS FVARIABLE U®(ST$SYSTM)
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KEY

EXPEC
EXINS
KEY

EXPEC
EXINS
KEY

EXPEC
EXINS
KEY

GENERATE
START

RMULT
CLEAR
FVARIABLE
FVARIABLE
GENERATE
START

RMULT
CLEAR
FVARIABLE
FVARIABLE
GENERATE
START

RMULT
CLEAR
FVARIABLE
FVARIABLE
GENERATE
START

END

250 ,FN$XPDIS
5

1

-
-

()
(V)]

155,77

5%
5%
e
5

FaB 66200

{(FT§C0PR)
(ST$SYSTM)
0,F

J N$XPDIS

11,33,55,77

6% (FT$CUPE)
6% (ST4SYSTM)
166 ,FN$XPDIS
5

11,33,55,77

7# (FT$CUPE)
7% (ST$CUPE)
153,FN$XPDIS
5

211
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L1l

C21

£31

L41]

L£sil

C&1

L7

£gl

£?1

£101
£111
£121
L1311
L1437
L1583
L161
Ci71
£1e1
L1911
L2017
£211
£221
£231
£241
231
[261
£271
£281
L2917
L3011
C313]
£321
L3331
L343
£331
361
L3713
C387
3?1
£401

Appendix F

THE ANALYTIC PROGRAM FOR THE DATA FLOW MODEL OF
CHAPTER VII

nOFELOW

[FF&4 f OHLT
tyq =
(+U14[0) ASERVICE TIME FOR DF]
IUQ - ]
(+U2¢0) n
IU3 = )
(¢U3¢[) A SERVICE TIME FOR DF3
IEMTER 73 (THE ARRIVAL RATE)'
(+73¢0) A ARIVAL RATE

TOW DECIMAL FLACES

SERVICE TIME FOR DOF2D

TEMTER o 4 MO, OF FREIG!

re]

YERTER K (THE STYSTEM CAFACITY) IT MUST EE GREATER THAM !
(¢Ke[1) a STSTEM CAFACITT, K MUST RE GREATER THAM N

TEMTER F!' g THE FROE, INST, EBEIMG READTY

(eFe)

TENTER Q' q THE FPROE, IMNST, REIMNG COMFLETED AMD GET OUT
(¢Qell)

T]eUWIxF

TREMXUY,

i TO GET A FEELIMG FOR DF] ,0F2, AMHD
a4 QUEUEIHG MODEL OF CHAFTER V,

0rF3 SEE THE

IFOR DF3 'y U3z y(U3)y ' AHD T3 = 'y ($73)
T e coun oove vt ass ooem 2o sows soms ]

Léed

F3e{0yl1y1)r0

TEMF&((U2+73 )= (UEX(F+QR)))
FO36e(1~TEMF ) (l-(TEMFX (K+1)))
EACK3Z S AFIL& (FO3) X ( TEMF L. )

el ],

PILeF3LyL1T(1s 1y 1) FARZL

SOUTEX Y (L3 K)

SEACKT
OUTZS ' THE AROVE F3L ARE FOR QLlLK*

rARD F3Il=0 OTHERWISE!

5 (I

(G K+5) FOF3L

'FO3 ="y ($FQ3)

TFOR DD 1y U2 = 'y (4U2)y ' AMK TRm'y, ($72)
b,

- 212 =
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€413
L4213
L4313
C441
£45]
L44]
£471
Lasl
L4917
L5017
L511
£521
£531
£541
£551
[561
£571
L5871
L5913
L4601
L6117
L6217
L6317
L4417
L&51
L4671
L6713
£681
L4697
L7031
€711
721
£731
£741
£751
£761
£771
£781
L7913
L8001
£311
82l
L6370
L84
£851
867
L8771
£esl
L89

FRL&(Or1y1)70
FORE(1=(T2:U2) )+ (1-(T2+U2) x (K+1))
EACUDIAFIL&((T2-UD ) R XFOR

L]

FRLEF2L,L1(1yls 1) PAFIL
SOUTIx Y ()

SEACKD
QUTRL'THE AROVE IS FOR Q¢ L (K¢
'AMD FRL = (0 OTHERWISE!

Rl =

(591+5) PRF2L

'FO2 = 'y (¢FO2)

PFOR XFL 'yt UL = 'y (eUL)y'  AHD Ti='y(e71)y!

Re(7T]l+(MxUL))

e (1= (RA(K-MEL1)) )= (1~F)

JeO

SUMY 0
EACK] $SUMLESUML4+ (((T1+U1) xJd) = (1))
et

S0UTY X (J2M)

SEBACK{
QUTHLIFQLe( 1+ ((r1=ULIRMYISCIMYIIX ) ) +BUMTL)
[

FL1Le(0s151)F0

Fl2Le(0y1,1)0F0
BACK] 1 IAFLILEFOIX(TIAL)-( (L)X (ULAL))
el

FlileF1llyC13(lyly1)FPAF] 1L
SQUTLIX Y (L) (M=1))

SEACK{ 1
QUT1]S'FPlil=?

Lk

'THE AROVE Flll. ARE FOR (@ £ L ¢ HM—q'!
(R
EACKLRIAF L2 eFOLX(( (T1+UL) k) X ( (A (H~L) )= L1))
lgebade

EloLeF 1L, L1CLs L idraridu
SOUTL2% 1 (LYK)

HEACK]2
OQUT LRV FLIL =

NF 12

'EQL ='y (#FO1) ,

TTHE AROVE FIR2L ARE FOR M ¢ L ¢ K
Iel

SUM]1L¢0O
MORE ; SUM] {LeSUML LL+IX(FLILILI31510)
Tele]

AOUTL X (e (M=1))

M=

213
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L9013
[?11
[921
L9231
L2411
£9357
[961]
£271
£981
L9913
£1003
C101]
L1021
L1031
£1043
L1093
L1061
w1071
£10837
21093
1101
o I |
£i122
£1131]
£i11431
v

SMORE

OUTIiL Jel

SUM] 2L¢0

MORED $ SUM] 2L SUMT 2L+ (JX (F12LEY51511))
Jed+l
SOUTLALXY (I (K=t))
SMORE?D

QUT]2L $SUML-SUMY1L+SUMT 2L
FEUTIL(SUMLLM)
VRE UTILI = ', (¢FEUTIL)
UTILL¢(1-FO1) M
UTILD&]~FO2

UTILZe1-FO3
UTILSTSe(UTIL{+UTIL2+UTILI)X100+3
TUTIL] = 'y(¢UTIL})y' THIS IS THE
TWUTIL2 = 'y (eUTILD)

TUTELS = 'y (¢UTILI),' THIS IS THE
TUTILSTS = ¢y (4UTILETS)

UL = 'y (eUl)y! AMD YL = 'y (eT1)s!
U2 =ty (eUR)y ' AMD TR = 'y (TR
TUZ = Ty (U3Z)y ! AMD T3 = 'y (¢T33)y!
TREE(MXUL) X (FEUTIL)

ETHROW  PE' 1S = 'y (¢TFE)

TSTEE ((MXUL)+UR4UT) X (UTILSTS)+10C
PTHROU 878 = ', ($TSTS)

214

FE''S UTILIZATION!
MEMORY UTILISATION!
IMSTRUQCTIONS /UMIT TIME'

IMSTRUCTIONS /UMIT TIME'
IMSTRUCTIONS /JUMIT TIME!
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Appendix G

THE SIMULATION PROGRAMS FOR BOTH MODELS OF THE
DATA FLOW SYSTEM OF CHAPTER VII

SIMULATE
NN RN RN R IR R RN RN RN RN R AR RN RN RPN N B ENNR RS SRR ANINS
* THIS PROGRAM SIMULATES A DATA FLOW SYSTEM bt
. IN THE SAME MANNER AS THE ANALYTIC MODEL DOES b
. IT GIVES THE OVERALL PICTURE OF A DATA FLOW MACHINE A *
AR NN SR RN ARSI R NN RN RGN RRE RN RNN I ARR AR RGN RNNNRINRS
RMULT 11
* PUNCTIONS SPECIFICATION
XPDIS FUNCTION RN1,C24 EXPONENTIAL DISTRIBUTION

0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/.94,2.81/.95,2.99/.96,3.2
‘.97,3-5/-98,3.9/-99.u-6/-995,5.3/.998,6.2/.999.7/.9998,8

SER1 FUNCTION RN1,C2 FOR THE PE SERVICE TIME ALLOCATION
0,5/1.,15
INITIAL X$INST,O INITIALIZATION OF THE NUMBER OF ISTRU-
» INITIAL X$PPP,.3/X80QQQ, .U
INITIAL X$SER1,20/X$SER2,20/X$SER3, 40
o WHERE SER1 IS FOR THE PE'S
& AND SERZ I3 FOR THE RESPACKET
. AND SER3 IS FOR THE MEMORY.
3TORAGE S$PES,S SPECIFY THE NUMBER OF PE'S IN THE
. SYSTEM.
» THE MAIN PROGRAM SEGMENT
INST GENERATE 11910 GENERATE THE MACRO INSTRUCTIONS
ENTER SYSTM
QUEUE CONCP THIS IS A CONCEPTUAL QUEUE
CAPCY TEST L Q$MEMQ, 40
DEPART CONCP
ASSIGN 1,X$SER1? PARAMETERS ASSIGNMENTS FOR PE SERVICE
ADVANCE 25 ,FN$XPDIS TIME. THIS REPRESENTS THE ARRIVAL RATE
STAY QUEUE MEMQ FOR THE MEMORY SUBSECTION
SEIZE MEM
DEPART MEMQ

ADVANCE X$SER3,FN$XPDIS
RELEASE MEM
TRANSFER +4,,QUEPE %4 OF INST. THAT GO TO THE PE

* I.E., THE READY INSTRUCTIONS.
TRANSFER +7,STAY,0UT .
QUEPE QUEUE PEQ FOR THE PE SUBSECTION
- 215 -
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ENTER PES
DEPART PEQ

ADVANCE P1,FN$XPDIS
TEST L Q$RESPQ,S$PES
LEAVE PES

QUEUE RESPQ

SEIZE RES

DEPART RESPQ

ADVANCE X$SER2,FN$XPDIS
RELEASE RES
 TRANSFER  ,STAY
OUT SAVEVALUE DONE+,1
LEAVE SYSTM
TERMINATE 1

*
* THE TIMER
*
* GENERATE 1000
* TERMINATE 1
#*
* THE CONTROL CARDS
»
START 10
RESET
INST GENERATE ,,,200
START 200
#*
RMULT 111
CLEAR X$SER1,X$SER2, X$SER3
STORAGE S$PES, 10
START 200
]
RMULT 111
CLEAR X$SER1,X$SER2,X$SER3
STORAGE S$PES,15
START 200
#*
RMULT 111
CLEAR X$SER1,X$SER2, X$SER3
STORAGE S$PES,20
START 200
*»
RMULT 11
CLEAR X$SER1,X$SER2,X$SER3
STORAGE  S$PES,30
START 200
END
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4 STMIIr ATY
- L]

-

FRRANNEAARARANNGNARNSNANRNRRARNNRNNRNRVGZABARBBARNRONNRRNANRNBURNONIRNN

PROGRAM UIME: (DFLOW SIMUL) THIS PROGRAM IS FOR DATA FLOW #
PROGRAM SIMULATION. IT DIFFERES FROM THE PHOGRAM DFLOW  #
ANALYTIC IN THE SENSE THAT IT SPECIFIES THE FINE DETAILS *
OF EXECUTION I.E. IT IS BASED ON INDIVIDUAL INSTRUCTION *#
EXECUTION. »
SENRRARNANRRRNBRNENISRNERNNN NN NRANAN IRV RRARRANARUANINAGANS
PESER FUNCTION RN1,C2
0,20/1.,30

STORAGE  S$PROCS, !
CONTR VARIABLE Q$MEMQU-1

INITIAL  X$0UT,0/X$STOR1,0/X$STOR2,0/X$STOR3,0/X$SSTORY ,0

INITIAL  X$QUCHK,O0/X$WRONG,O

INITIAL  X1-X6,0

ouT EQU 20,X
STOR1 EQU 21,X
STOR2 EQU 22,X
STOR3 EQU 23,X
STORY EQU 24 ,X%
WRONG EQU 25,X
QUCHK EQU 26,X
]
*
»
GENERATE ves1,,30 GENERATE AN INSTRUCTION
ASSIGN 1,1 THE CELL NUMBER OR ADDRESS
ASSIGN 2,1 THE INSTRUCTION NUMBER
ASSIGN 4,FN$PESER THE PROCESSING TIME IN THE PE
ASSIGN 5,2 THE NUMBER OQF OPERANDS
ASSIGN 6,2 THE OPERAND COUNTER
ASSIGN 8,2 THE ADDRESS OF 1ST OPND IN THIS INSTR CEL
ASSIGN 9,3 THE ADDRESS OF 2ND OPND IN THIS INSTR CEL
ASSIGN 11,20 THE 1ST DEST. ADDRESS
s ASSIGN 12,10 THE 2ND DEST. ADDRESS
b ASSIGN 16,20 THE 3RD DEST. ADDRESS
* PRIORITY P6 THE PRIORITY IS ASSIGNE IN ACCORDANCE

TRANSFER »MEMR1

» WITH THE NUMBER OF OPERANDS IN THE
. OPERAND COUNTER.
s EACH GROUP HEREAFTER WILL RESEMBLE THE ABOVE (I.E., IT WILL
. HAVE THE SAME NUMBER OF PARAMETERS BUT WITH DIFFERENT VALUES)
) AND EACH NODE IN THE DATA FLOW GRAPH WILL RAVE A DISTINCTIVE
: SET OF VALUES.

GENERATE  ,,,1,,30

ASSIGN 1,4

ASSIGN 2,2

ASSIGN 4,FNS$PESER

ASSIGN 5,2

ASSIGN 6,2

ASSIGN 8,5
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o %

ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
PRIORITY
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
PRIORITY
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
PRIORITY
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
PRIORITY
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN

9,6
11,21
12,15
13,18
16,27
P6
,MEMR1

1,,30

’
7
3
FN$PESER
2
2
8
9

e W W W W o« w =

23

W a WOV &N -

[¢)}

,MEMR 1

1,,30
0

N$PESER

- NN .
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ASSIGN
ASSIGN
ASSIGN
ASSIGN
PRIORITY
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGH
ASSIGN
ASSIGN
ASSIGN
ASSIGN
TRANSFER

GENERATE

ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
TRANSFER

GENERATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN

11,29
12,32
,MEMR 1

1,,30
2

N$PESER

NOMN™ M-

=20 0~

$PESER

WNDOMNT 2O
oW

- W W e w W e e

W OVUL =N —ave

219

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



220

ASSIGN 11,38

* ASSIGN 12,32
ASSIGN 16,50
TRANSFER ,MEMR1

*
GENERATE 4391,5,30
ASSIGN 1,31
ASSIGN 2,11
ASSIGN 4 ,FN$PESER
ASSIGN 5,2
ASSIGN 6,0
ASSIGN 8,32
ASSIGN 9,33
ASSIGN 11,39

* ASSIGN 12,32
TRANSFER ,MEMR1

»
GENERATE y34971,5,30
ASSIGN 1,34
ASSIGN 2,12
ASSIGN 5,2
ASSIGN 6,0
ASSIGN 8,35
ASSIGN 9,36
ASSIGN 11,42

* ASSIGN 12,32
TRANSFER ,MEMR1

#*
GENERATE ye2 1,530
ASSIGN 1,37
ASSIGN 2,13
ASSIGN 4 ,FN$PESER
ASSIGN 5,2
ASSIGN 6,0
ASSIGN 8,38
ASSIGN 9,39
ASSIGN 11,41

* ASSIGN 12,32
ASSIGN 16,50

TRANSFER »MEMR1

GENERATE s91145430

ASSIGN 1,40
ASSIGN 2,14
ASSIGN 4 ,FN$PESER
ASSIGN 5,2
4SSIGN 6,0
ASSIGN 8,41
ASSIGN 9,42

» ASSIGN ~ 11,29

* ASSIGN 12,32
ASSIGN 16,50
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TRANSFER »MEMR1

MEMR1 ENTER SYSTM™
LOGIC R LOCK
LOGIC R NEXIN
MEMRY TEST E P6,P5,CHECK  TEST THE OPERAND COUNTER TO SEE

. IF IT HAS THE REQUIRED NUMBER
. OF OPERANDS, IF YES PASS THE
* INSTRUCTION TO THE PE QUEUE.
*
EXEC QUEUE QUQUE

ENTER PROCS

DEPART 0UQUE

ADVANCE 24 THE PROCESSOR AT WORK

LEAVE PROCS

QUEUE DISQU

GATE LR NEXIM
LOGIC S NEXIN
DEPART DISQU
ADVANCE 10
SAVEVALUE STOR1,P11
SAVEVALUE STOR2,P12
SAVEVALUE STOR3,P13
SAVEVALUE STOR4,P14
SAVEVALUE QUCHK,Q$MEMQU

b TEST G X$QUCHK, 0 ,NOMEM
LOGIC s LOCK
TRANSFER ,QUTST

*NOMEM LOGIC R NEXIN

OUTST TEST E $16,0,00TPT CHECKING FOR AN OUTPUT INSTRUCTION
LEAVE SYSTM
TEAMINATE 1

QUTPT SAVEVALUE P2,P16
SAVEVALUE 0QUTs+,1
LEAVE SYSTM
TERMINATE 1

*
* THE FOLLOWING SEGMENT REPRESENT THE MEMORY. AS SOON
* AS AN INSTRUCTION IS EXECUTED IN THE PE THE MEMORY
: STARTS CHECKING IF THE RESULT SHOULD BE ASSIGNED TO
* ANY OTHER INSTRUCTIONS AND DECREMENTING THE OPERAND
’ COUNTER AS A RESULT
*
CHECK QUEUE MEMQU
b TEST LE Q$DUMY,Q,MORE
b LOGIC R conce
GATE Ls LOCK
SAVEVALUE TEMP,QSMEMQU
SEIZE MEM
ADVANCE 5
b ASSIGN T+y1 EOR THE CASE THAT THE INSTRUCTION
b LOOPS.THIS SEGMENT WILL TRY TO CATCH IT
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NEXT1
*NEXT2
[
#NEXT3
*

NEXTY

NEXTS
SNEXT6
*
#NEXTY
*

NEXTF
]

REPET

WAIT

EMPTY
EXIT
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TEST LE
TEST E
ASSIGN
TEST E
ASSIGN
TEST E
ASSIGN
TEST E
ASSIGN
TEST E
ASSIGN
TEST E
ASSIGN
TEST E
ASSIGN
TEST E
ASSIGN
RELEASE
SAVEVALUE
TEST LE
LOGIC R
LOGIC R
LOGIC s
DEPART
TEST E
TRANSFER
QUEUE
GATE LS
DEPART
TEST LE
LOGIC R
TRANSFER
SAVEVALUE
TERMINATE

P7,30,EXIT

P8 ,X$STOR1,NEXT1
6e,1

P8,X$STORZ ,NEXTY
6+,1

28 ,X$STOR3 ,NEXTI
Ge,1

P8 ,X$STORY ,NEXTHY
64,1
P9,X$STOR1,NEXTS
Ge,1

P9,X$STOR2 ,NEXTF
6+,1
P9,X$STOR3I,NEXTT
64,1

?9,X$STORY ,NEXTF
64,1

MEM

TEMP-,1
VSCONTR,0,REPET
LOCK

NEXIN

CONCP

MEMQU

£5,86,WALT

,EXEC

DUMY

coNCP

DUMY
Q$DUMY, 0 ,EMPTY
coNcP

s CHECK

WRONG,P2

222

THIS AND THE NEXT TEST ARE FOR THE
3RD AND U7H DESTINATION ADDRESSES
IF THEY EXIST.

1 WHERE P2 IS THE INSTRUCTION NUMBER

THE TIMER SEGMENT

GENERATE
TERMINATE

1000
1

CONTROL CARDS

START

STORAGE
CLEAR
START

STORAGE
CLEAR
START

14 THIS SHOULD EQUAL TO THE NUMBER
OF INSTRUCTIONS IN THE SYSTEM.

S$PROCS, 4
14
S$PROCS,T7
14

FOR THE SECOND RON

FOR THE THIRD RUN



STORAGE
CLEAR
START

STORAGE
CLEAR
START

STORAGE
CLEAR
START

END

S$PROCS, 10 FOR THE FORTH RUN
1
S$PROCS, 13 FOR THE FIFTH RUN
14
S$PROCS,20 FOR THE SIXTH RUN
14

223
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